一种大孔碳纳米框架,用于承载Mott-Schottky Fe-Co/Mo2C位点,作为一种出色的双功能氧电催化剂。

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jie Hong, Lei Zhang, Qiliang Zhu, Ziang Du, Yingtang Zhou, Thomas Wågberg and Guangzhi Hu
{"title":"一种大孔碳纳米框架,用于承载Mott-Schottky Fe-Co/Mo2C位点,作为一种出色的双功能氧电催化剂。","authors":"Jie Hong, Lei Zhang, Qiliang Zhu, Ziang Du, Yingtang Zhou, Thomas Wågberg and Guangzhi Hu","doi":"10.1039/D3MH01237A","DOIUrl":null,"url":null,"abstract":"<p >Simultaneously optimizing the d-band center of the catalyst and the mass/charge transport processes during the oxygen catalytic reaction is an essential but arduous task in the pursuit of creating effective and long-lasting bifunctional oxygen catalysts. In this study, a Fe–Co/Mo<small><sub>2</sub></small>C@N-doped carbon macroporous nanoframe was successfully synthesized <em>via</em> a facile “conformal coating and coordination capture” pyrolysis strategy. As expected, the resulting heterogeneous electrocatalyst exhibited excellent reversible oxygen electrocatalytic performance in an alkaline medium, as demonstrated by the small potential gap of 0.635 V between the operating potential of 1.507 V at 10 mA cm<small><sup>−2</sup></small> for the oxygen evolution reaction and the half-wave potential of 0.872 V towards the oxygen reduction reaction. Additionally, the developed Zn–air battery employing the macroporous nanoframe heterostructure displayed an impressive peak power density of 218 mW cm<small><sup>−2</sup></small>, a noteworthy specific capacity of 694 mA h g<small><sub>Zn</sub></small><small><sup>−1</sup></small>, and remarkable charging/discharging cycle durability. Theoretical calculations confirmed that the built-in electric field between the Fe–Co alloy and Mo<small><sub>2</sub></small>C semiconductor could induce advantageous charge transport and redistribution at the heterointerface, contributing to the optimization of the d-band center of the nanohybrid and ultimately leading to a reduction in the reaction energy barrier during catalytic processes. The exquisite macroporous nanoframe facilitated the rapid transport of ions and charges, as well as the smooth access of oxygen to the internal active site. Thus, the presented unique electronic structure regulation and macroporous structure design show promising potential for the development of robust bifunctional oxygen electrodes.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 12","pages":" 5969-5982"},"PeriodicalIF":12.2000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A macroporous carbon nanoframe for hosting Mott–Schottky Fe–Co/Mo2C sites as an outstanding bi-functional oxygen electrocatalyst†\",\"authors\":\"Jie Hong, Lei Zhang, Qiliang Zhu, Ziang Du, Yingtang Zhou, Thomas Wågberg and Guangzhi Hu\",\"doi\":\"10.1039/D3MH01237A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Simultaneously optimizing the d-band center of the catalyst and the mass/charge transport processes during the oxygen catalytic reaction is an essential but arduous task in the pursuit of creating effective and long-lasting bifunctional oxygen catalysts. In this study, a Fe–Co/Mo<small><sub>2</sub></small>C@N-doped carbon macroporous nanoframe was successfully synthesized <em>via</em> a facile “conformal coating and coordination capture” pyrolysis strategy. As expected, the resulting heterogeneous electrocatalyst exhibited excellent reversible oxygen electrocatalytic performance in an alkaline medium, as demonstrated by the small potential gap of 0.635 V between the operating potential of 1.507 V at 10 mA cm<small><sup>−2</sup></small> for the oxygen evolution reaction and the half-wave potential of 0.872 V towards the oxygen reduction reaction. Additionally, the developed Zn–air battery employing the macroporous nanoframe heterostructure displayed an impressive peak power density of 218 mW cm<small><sup>−2</sup></small>, a noteworthy specific capacity of 694 mA h g<small><sub>Zn</sub></small><small><sup>−1</sup></small>, and remarkable charging/discharging cycle durability. Theoretical calculations confirmed that the built-in electric field between the Fe–Co alloy and Mo<small><sub>2</sub></small>C semiconductor could induce advantageous charge transport and redistribution at the heterointerface, contributing to the optimization of the d-band center of the nanohybrid and ultimately leading to a reduction in the reaction energy barrier during catalytic processes. The exquisite macroporous nanoframe facilitated the rapid transport of ions and charges, as well as the smooth access of oxygen to the internal active site. Thus, the presented unique electronic structure regulation and macroporous structure design show promising potential for the development of robust bifunctional oxygen electrodes.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" 12\",\"pages\":\" 5969-5982\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/mh/d3mh01237a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/mh/d3mh01237a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

同时优化催化剂的d带中心和氧催化反应过程中的质量/电荷传输过程是创造有效和持久的双功能氧催化剂的一项重要但艰巨的任务。在本研究中/Mo2C@N-doped采用共形包覆和配位捕获的热解策略成功合成了碳大孔纳米框架。正如预期的那样,所得到的非均相电催化剂在碱性介质中表现出优异的可逆氧电催化性能,如用于析氧反应的在10mA cm-2下1.507V的操作电势和用于氧还原反应的0.872V的半波电势之间0.635V的小电势差所示。此外,采用大孔纳米框架异质结构开发的锌-空气电池显示出218 mW cm-2的令人印象深刻的峰值功率密度,694 mA h gZn-1的显著比容量,以及显著的充电/放电循环耐久性。理论计算证实,Fe-Co合金和Mo2C半导体之间的内置电场可以在异质界面诱导有利的电荷传输和再分配,有助于优化纳米杂化物的d带中心,并最终导致催化过程中反应能垒的降低。精致的大孔纳米框架有助于离子和电荷的快速传输,以及氧气顺利进入内部活性位点。因此,所提出的独特的电子结构调控和大孔结构设计显示出开发强大的双功能氧电极的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A macroporous carbon nanoframe for hosting Mott–Schottky Fe–Co/Mo2C sites as an outstanding bi-functional oxygen electrocatalyst†

A macroporous carbon nanoframe for hosting Mott–Schottky Fe–Co/Mo2C sites as an outstanding bi-functional oxygen electrocatalyst†

Simultaneously optimizing the d-band center of the catalyst and the mass/charge transport processes during the oxygen catalytic reaction is an essential but arduous task in the pursuit of creating effective and long-lasting bifunctional oxygen catalysts. In this study, a Fe–Co/Mo2C@N-doped carbon macroporous nanoframe was successfully synthesized via a facile “conformal coating and coordination capture” pyrolysis strategy. As expected, the resulting heterogeneous electrocatalyst exhibited excellent reversible oxygen electrocatalytic performance in an alkaline medium, as demonstrated by the small potential gap of 0.635 V between the operating potential of 1.507 V at 10 mA cm−2 for the oxygen evolution reaction and the half-wave potential of 0.872 V towards the oxygen reduction reaction. Additionally, the developed Zn–air battery employing the macroporous nanoframe heterostructure displayed an impressive peak power density of 218 mW cm−2, a noteworthy specific capacity of 694 mA h gZn−1, and remarkable charging/discharging cycle durability. Theoretical calculations confirmed that the built-in electric field between the Fe–Co alloy and Mo2C semiconductor could induce advantageous charge transport and redistribution at the heterointerface, contributing to the optimization of the d-band center of the nanohybrid and ultimately leading to a reduction in the reaction energy barrier during catalytic processes. The exquisite macroporous nanoframe facilitated the rapid transport of ions and charges, as well as the smooth access of oxygen to the internal active site. Thus, the presented unique electronic structure regulation and macroporous structure design show promising potential for the development of robust bifunctional oxygen electrodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信