Lorna J. Smith, Wilfred F. van Gunsteren, Bartosz Stankiewicz, Niels Hansen
{"title":"利用三维耦合核磁共振数据推导蛋白质的结构信息","authors":"Lorna J. Smith, Wilfred F. van Gunsteren, Bartosz Stankiewicz, Niels Hansen","doi":"10.1007/s10858-020-00355-5","DOIUrl":null,"url":null,"abstract":"<p>Values of <sup>3</sup><i>J</i>-couplings as obtained from NMR experiments on proteins cannot easily be used to determine protein structure due to the difficulty of accounting for the high sensitivity of intermediate <sup>3</sup><i>J</i>-coupling values (4–8?Hz) to the averaging period that must cover the conformational variability of the torsional angle related to the <sup>3</sup><i>J</i>-coupling, and due to the difficulty of handling the multiple-valued character of the inverse Karplus relation between torsional angle and <sup>3</sup><i>J</i>-coupling. Both problems can be solved by using <sup>3</sup><i>J</i>-coupling time-averaging local-elevation restraining MD simulation. Application to the protein hen egg white lysozyme using 213 backbone and side-chain <sup>3</sup><i>J</i>-coupling restraints shows that a conformational ensemble compatible with the experimental data can be obtained using this technique, and that accounting for averaging and the ability of the algorithm to escape from local minima for the torsional angle induced by the Karplus relation, are essential for a comprehensive use of <sup>3</sup><i>J</i>-coupling data in protein structure determination.</p>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10858-020-00355-5","citationCount":"2","resultStr":"{\"title\":\"On the use of 3J-coupling NMR data to derive structural information on proteins\",\"authors\":\"Lorna J. Smith, Wilfred F. van Gunsteren, Bartosz Stankiewicz, Niels Hansen\",\"doi\":\"10.1007/s10858-020-00355-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Values of <sup>3</sup><i>J</i>-couplings as obtained from NMR experiments on proteins cannot easily be used to determine protein structure due to the difficulty of accounting for the high sensitivity of intermediate <sup>3</sup><i>J</i>-coupling values (4–8?Hz) to the averaging period that must cover the conformational variability of the torsional angle related to the <sup>3</sup><i>J</i>-coupling, and due to the difficulty of handling the multiple-valued character of the inverse Karplus relation between torsional angle and <sup>3</sup><i>J</i>-coupling. Both problems can be solved by using <sup>3</sup><i>J</i>-coupling time-averaging local-elevation restraining MD simulation. Application to the protein hen egg white lysozyme using 213 backbone and side-chain <sup>3</sup><i>J</i>-coupling restraints shows that a conformational ensemble compatible with the experimental data can be obtained using this technique, and that accounting for averaging and the ability of the algorithm to escape from local minima for the torsional angle induced by the Karplus relation, are essential for a comprehensive use of <sup>3</sup><i>J</i>-coupling data in protein structure determination.</p>\",\"PeriodicalId\":613,\"journal\":{\"name\":\"Journal of Biomolecular NMR\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10858-020-00355-5\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular NMR\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10858-020-00355-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-020-00355-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
On the use of 3J-coupling NMR data to derive structural information on proteins
Values of 3J-couplings as obtained from NMR experiments on proteins cannot easily be used to determine protein structure due to the difficulty of accounting for the high sensitivity of intermediate 3J-coupling values (4–8?Hz) to the averaging period that must cover the conformational variability of the torsional angle related to the 3J-coupling, and due to the difficulty of handling the multiple-valued character of the inverse Karplus relation between torsional angle and 3J-coupling. Both problems can be solved by using 3J-coupling time-averaging local-elevation restraining MD simulation. Application to the protein hen egg white lysozyme using 213 backbone and side-chain 3J-coupling restraints shows that a conformational ensemble compatible with the experimental data can be obtained using this technique, and that accounting for averaging and the ability of the algorithm to escape from local minima for the torsional angle induced by the Karplus relation, are essential for a comprehensive use of 3J-coupling data in protein structure determination.
期刊介绍:
The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include:
Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR.
New NMR techniques for studies of biological macromolecules.
Novel approaches to computer-aided automated analysis of multidimensional NMR spectra.
Computational methods for the structural interpretation of NMR data, including structure refinement.
Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals.
New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.