粉煤灰增强粗甘油基聚氨酯泡沫复合材料性能的研究

Linda Zhang, Weihong Zhang, Mengyu Li, Pan Li, Xiaoyang Zheng, Chun Chang, Weihua Zou
{"title":"粉煤灰增强粗甘油基聚氨酯泡沫复合材料性能的研究","authors":"Linda Zhang,&nbsp;Weihong Zhang,&nbsp;Mengyu Li,&nbsp;Pan Li,&nbsp;Xiaoyang Zheng,&nbsp;Chun Chang,&nbsp;Weihua Zou","doi":"10.1007/s42768-022-00112-4","DOIUrl":null,"url":null,"abstract":"<div><p>Coal fly ash (CFA) is the main combustion residue of fine ground coal in the process of coal-fired thermal power generation, and crude glycerol (CG) is the byproduct of biodiesel production. The novel polyurethane/CFA (PU/CFA) foam composites were prepared from CFA and CG. Two kinds of CFA, CFAI and CFAII were used as fillers for the property enhancement of PU/CFA composites, and the effects on foaming behavior and the reinforcement for the PU/CFA composites were investigated. It was found that the addition of CFA can prolong the rising time and tack-free time, and the maximum rising time and tack-free time increased to 40 s and 42 s. Meanwhile, the maximum compressive strength of PU/CFAI and PU/CFAII increased to 0.2186 MPa and 0.2284 MPa with the addition of CFA. The thermogravimetric analysis showed that the PU/CFA composites underwent three stages of thermal decomposition, and the amount of carbon residue increased from 23.11% to 67.91% with increasing CFA dosage. Moreover, the values of the limit oxygen index increased from 21.5% to 23.7% with the incorporation of CFA into the PU foam matrix, indicating that CFA improved the thermal stability and flame retardant performance of the composites. This study provided a new method for the recycling and high-value utilization of CG and CFA.</p></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"4 4","pages":"271 - 282"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42768-022-00112-4.pdf","citationCount":"2","resultStr":"{\"title\":\"Coal fly ash reinforcement for the property enhancement of crude glycerol-based polyurethane foam composites\",\"authors\":\"Linda Zhang,&nbsp;Weihong Zhang,&nbsp;Mengyu Li,&nbsp;Pan Li,&nbsp;Xiaoyang Zheng,&nbsp;Chun Chang,&nbsp;Weihua Zou\",\"doi\":\"10.1007/s42768-022-00112-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Coal fly ash (CFA) is the main combustion residue of fine ground coal in the process of coal-fired thermal power generation, and crude glycerol (CG) is the byproduct of biodiesel production. The novel polyurethane/CFA (PU/CFA) foam composites were prepared from CFA and CG. Two kinds of CFA, CFAI and CFAII were used as fillers for the property enhancement of PU/CFA composites, and the effects on foaming behavior and the reinforcement for the PU/CFA composites were investigated. It was found that the addition of CFA can prolong the rising time and tack-free time, and the maximum rising time and tack-free time increased to 40 s and 42 s. Meanwhile, the maximum compressive strength of PU/CFAI and PU/CFAII increased to 0.2186 MPa and 0.2284 MPa with the addition of CFA. The thermogravimetric analysis showed that the PU/CFA composites underwent three stages of thermal decomposition, and the amount of carbon residue increased from 23.11% to 67.91% with increasing CFA dosage. Moreover, the values of the limit oxygen index increased from 21.5% to 23.7% with the incorporation of CFA into the PU foam matrix, indicating that CFA improved the thermal stability and flame retardant performance of the composites. This study provided a new method for the recycling and high-value utilization of CG and CFA.</p></div>\",\"PeriodicalId\":807,\"journal\":{\"name\":\"Waste Disposal & Sustainable Energy\",\"volume\":\"4 4\",\"pages\":\"271 - 282\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42768-022-00112-4.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste Disposal & Sustainable Energy\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42768-022-00112-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Disposal & Sustainable Energy","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s42768-022-00112-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

粉煤灰(CFA)是燃煤火力发电过程中细磨煤的主要燃烧残渣,粗甘油(CG)是生产生物柴油的副产物。以CFA和CG为原料制备了新型聚氨酯/CFA (PU/CFA)泡沫复合材料。采用CFAI和CFAI两种CFA作为PU/CFA复合材料的增强填料,研究了其对PU/CFA复合材料发泡性能和增强性能的影响。结果表明,CFA的加入可以延长上升时间和无粘着时间,最大上升时间和无粘着时间分别增加到40 s和42 s。同时,随着CFA的加入,PU/CFAI和PU/CFAI的最大抗压强度分别提高到0.2186 MPa和0.2284 MPa。热重分析表明,PU/CFA复合材料经历了3个阶段的热分解,随着CFA用量的增加,残炭量从23.11%增加到67.91%。此外,在聚氨酯泡沫基体中加入CFA后,极限氧指数从21.5%提高到23.7%,表明CFA提高了复合材料的热稳定性和阻燃性能。本研究为CG和CFA的回收利用和高价值利用提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Coal fly ash reinforcement for the property enhancement of crude glycerol-based polyurethane foam composites

Coal fly ash reinforcement for the property enhancement of crude glycerol-based polyurethane foam composites

Coal fly ash (CFA) is the main combustion residue of fine ground coal in the process of coal-fired thermal power generation, and crude glycerol (CG) is the byproduct of biodiesel production. The novel polyurethane/CFA (PU/CFA) foam composites were prepared from CFA and CG. Two kinds of CFA, CFAI and CFAII were used as fillers for the property enhancement of PU/CFA composites, and the effects on foaming behavior and the reinforcement for the PU/CFA composites were investigated. It was found that the addition of CFA can prolong the rising time and tack-free time, and the maximum rising time and tack-free time increased to 40 s and 42 s. Meanwhile, the maximum compressive strength of PU/CFAI and PU/CFAII increased to 0.2186 MPa and 0.2284 MPa with the addition of CFA. The thermogravimetric analysis showed that the PU/CFA composites underwent three stages of thermal decomposition, and the amount of carbon residue increased from 23.11% to 67.91% with increasing CFA dosage. Moreover, the values of the limit oxygen index increased from 21.5% to 23.7% with the incorporation of CFA into the PU foam matrix, indicating that CFA improved the thermal stability and flame retardant performance of the composites. This study provided a new method for the recycling and high-value utilization of CG and CFA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信