二聚体代数、古尔代数和循环收缩

IF 0.5 4区 数学 Q3 MATHEMATICS
Charlie Beil
{"title":"二聚体代数、古尔代数和循环收缩","authors":"Charlie Beil","doi":"10.1007/s10468-023-10224-y","DOIUrl":null,"url":null,"abstract":"<div><p>A ghor algebra is the path algebra of a dimer quiver on a surface, modulo relations that come from the perfect matchings of its quiver. Such algebras arise from abelian quiver gauge theories in physics. We show that a ghor algebra <span>\\(\\Lambda \\)</span> on a torus is a dimer algebra (a quiver with potential) if and only if it is noetherian, and otherwise <span>\\(\\Lambda \\)</span> is the quotient of a dimer algebra by homotopy relations. Furthermore, we classify the simple <span>\\(\\Lambda \\)</span>-modules of maximal dimension and give an explicit description of the center of <span>\\(\\Lambda \\)</span> using a special subset of perfect matchings. In our proofs we introduce formalized notions of Higgsing and the mesonic chiral ring from quiver gauge theory.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 1","pages":"547 - 582"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-023-10224-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Dimer Algebras, Ghor Algebras, and Cyclic Contractions\",\"authors\":\"Charlie Beil\",\"doi\":\"10.1007/s10468-023-10224-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A ghor algebra is the path algebra of a dimer quiver on a surface, modulo relations that come from the perfect matchings of its quiver. Such algebras arise from abelian quiver gauge theories in physics. We show that a ghor algebra <span>\\\\(\\\\Lambda \\\\)</span> on a torus is a dimer algebra (a quiver with potential) if and only if it is noetherian, and otherwise <span>\\\\(\\\\Lambda \\\\)</span> is the quotient of a dimer algebra by homotopy relations. Furthermore, we classify the simple <span>\\\\(\\\\Lambda \\\\)</span>-modules of maximal dimension and give an explicit description of the center of <span>\\\\(\\\\Lambda \\\\)</span> using a special subset of perfect matchings. In our proofs we introduce formalized notions of Higgsing and the mesonic chiral ring from quiver gauge theory.</p></div>\",\"PeriodicalId\":50825,\"journal\":{\"name\":\"Algebras and Representation Theory\",\"volume\":\"27 1\",\"pages\":\"547 - 582\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10468-023-10224-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebras and Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-023-10224-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-023-10224-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

戈尔代数是表面上的二元颤子的路径代数,模数关系来自于其颤子的完美匹配。这样的代数产生于物理学中的无边震元规理论。我们证明,当且仅当一个环上的(\Lambda \)是无系时,它才是一个二元代数(有势的四元组);否则,(\Lambda \)就是一个二元代数的同调关系商。此外,我们对最大维度的简单 \(\Lambda \)模块进行了分类,并使用完美匹配的特殊子集给出了对\(\Lambda \)中心的明确描述。在我们的证明中,我们引入了希格星和介子手性环的形式化概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dimer Algebras, Ghor Algebras, and Cyclic Contractions

A ghor algebra is the path algebra of a dimer quiver on a surface, modulo relations that come from the perfect matchings of its quiver. Such algebras arise from abelian quiver gauge theories in physics. We show that a ghor algebra \(\Lambda \) on a torus is a dimer algebra (a quiver with potential) if and only if it is noetherian, and otherwise \(\Lambda \) is the quotient of a dimer algebra by homotopy relations. Furthermore, we classify the simple \(\Lambda \)-modules of maximal dimension and give an explicit description of the center of \(\Lambda \) using a special subset of perfect matchings. In our proofs we introduce formalized notions of Higgsing and the mesonic chiral ring from quiver gauge theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups. The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信