使用自适应网格的电磁建模 - 误差估计和几何表示法

IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Klaus Spitzer
{"title":"使用自适应网格的电磁建模 - 误差估计和几何表示法","authors":"Klaus Spitzer","doi":"10.1007/s10712-023-09794-9","DOIUrl":null,"url":null,"abstract":"<div><p>This review paper addresses the development of numerical modeling of electromagnetic fields in geophysics with a focus on recent finite element simulation. It discusses ways of estimating errors of our solutions for a perfectly matched modeling domain and the problems that arise from its insufficient representation. After a brief outline of early methods and modeling approaches, the paper mainly discusses the capabilities of the finite element method formulated on unstructured grids and the advantages of local h-refinement allowing for both a flexible and largely accurate representation of the geometries of the multi-scale geomaterial and an accurate evaluation of the underlying functions representing the physical fields. In summary, the accuracy of the solution depends on the geometric mapping, the choice of the mathematical model, and the spatial discretization. Although the available error estimators do not necessarily provide reliable error bounds for our complex geomodels, they are still useful to guide grid refinement. Therefore, an overview of the most common a posteriori error estimators is given. It will be shown that the sensitivity is the most important function in both guiding the geometric mapping and the local refinement.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 1","pages":"277 - 314"},"PeriodicalIF":4.9000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-023-09794-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Electromagnetic Modeling Using Adaptive Grids – Error Estimation and Geometry Representation\",\"authors\":\"Klaus Spitzer\",\"doi\":\"10.1007/s10712-023-09794-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review paper addresses the development of numerical modeling of electromagnetic fields in geophysics with a focus on recent finite element simulation. It discusses ways of estimating errors of our solutions for a perfectly matched modeling domain and the problems that arise from its insufficient representation. After a brief outline of early methods and modeling approaches, the paper mainly discusses the capabilities of the finite element method formulated on unstructured grids and the advantages of local h-refinement allowing for both a flexible and largely accurate representation of the geometries of the multi-scale geomaterial and an accurate evaluation of the underlying functions representing the physical fields. In summary, the accuracy of the solution depends on the geometric mapping, the choice of the mathematical model, and the spatial discretization. Although the available error estimators do not necessarily provide reliable error bounds for our complex geomodels, they are still useful to guide grid refinement. Therefore, an overview of the most common a posteriori error estimators is given. It will be shown that the sensitivity is the most important function in both guiding the geometric mapping and the local refinement.</p></div>\",\"PeriodicalId\":49458,\"journal\":{\"name\":\"Surveys in Geophysics\",\"volume\":\"45 1\",\"pages\":\"277 - 314\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10712-023-09794-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surveys in Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10712-023-09794-9\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surveys in Geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10712-023-09794-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

这篇综述论文探讨了地球物理学电磁场数值建模的发展,重点是最近的有限元模拟。论文讨论了如何估算完全匹配建模域的解的误差,以及由于其表示不充分而产生的问题。在简要概述了早期的方法和建模方法之后,论文主要讨论了在非结构网格上制定的有限元方法的能力,以及局部 h- 精化的优势,这种方法既能灵活、基本准确地表示多尺度地球材料的几何形状,又能准确评估表示物理场的基本函数。总之,求解的准确性取决于几何映射、数学模型的选择和空间离散化。虽然现有的误差估计值并不一定能为复杂的地质模型提供可靠的误差范围,但仍可用于指导网格细化。因此,本文概述了最常见的后验误差估算器。结果将表明,灵敏度是指导几何映射和局部细化的最重要函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electromagnetic Modeling Using Adaptive Grids – Error Estimation and Geometry Representation

Electromagnetic Modeling Using Adaptive Grids – Error Estimation and Geometry Representation

This review paper addresses the development of numerical modeling of electromagnetic fields in geophysics with a focus on recent finite element simulation. It discusses ways of estimating errors of our solutions for a perfectly matched modeling domain and the problems that arise from its insufficient representation. After a brief outline of early methods and modeling approaches, the paper mainly discusses the capabilities of the finite element method formulated on unstructured grids and the advantages of local h-refinement allowing for both a flexible and largely accurate representation of the geometries of the multi-scale geomaterial and an accurate evaluation of the underlying functions representing the physical fields. In summary, the accuracy of the solution depends on the geometric mapping, the choice of the mathematical model, and the spatial discretization. Although the available error estimators do not necessarily provide reliable error bounds for our complex geomodels, they are still useful to guide grid refinement. Therefore, an overview of the most common a posteriori error estimators is given. It will be shown that the sensitivity is the most important function in both guiding the geometric mapping and the local refinement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surveys in Geophysics
Surveys in Geophysics 地学-地球化学与地球物理
CiteScore
10.00
自引率
10.90%
发文量
64
审稿时长
4.5 months
期刊介绍: Surveys in Geophysics publishes refereed review articles on the physical, chemical and biological processes occurring within the Earth, on its surface, in its atmosphere and in the near-Earth space environment, including relations with other bodies in the solar system. Observations, their interpretation, theory and modelling are covered in papers dealing with any of the Earth and space sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信