德黑兰盆地场地效应估算及其对模拟结果的影响

IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Reza Alikhanzadeh, Hamid Zafarani, Behzad Hassani
{"title":"德黑兰盆地场地效应估算及其对模拟结果的影响","authors":"Reza Alikhanzadeh,&nbsp;Hamid Zafarani,&nbsp;Behzad Hassani","doi":"10.1007/s10950-023-10149-5","DOIUrl":null,"url":null,"abstract":"<div><p>Recent earthquake damage distributions have demonstrated that the influence of local geology on ground shaking is a significant factor in engineering seismology. So, calculating the site effect is a priority to get a trustworthy assessment of the seismic risk for a location, in addition to studying the local seismic sources. The signal amplitude can be amplified by this effect throughout a range of periods. The site effect has been calculated using a variety of computational and experimental techniques, such as seismic noise measurements. In this study, to calculate the site effect, the analysis of accelerograms recorded by Iran’s strong motion network of the Road, Housing, and Urban Development Research Center was used. Here, 294 records from 63 stations were used to calculate the H/V (horizontal to vertical spectral ratio) curve as well as the near-surface high-frequency attenuation parameter (κ<sub>0</sub>). The classification method is based on determining the peak period at each station. To examine site effect consideration, we use the hybrid method composed of the finite difference method for low frequencies (&lt; 1 Hz) and a stochastic finite fault method for high-frequency radiation (&gt; 1 Hz) to simulate an earthquake scenario on the Niavaran fault, which is located north of Tehran, Iran. According to the findings, different site classes cause spectral amplitude variations ranging from 11 to 28% at different periods (<i>T</i> = 0.2, 0.5, 1.0, and 4.0 s).</p></div>","PeriodicalId":16994,"journal":{"name":"Journal of Seismology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Site effect estimation in the Tehran basin and its impact on simulation results\",\"authors\":\"Reza Alikhanzadeh,&nbsp;Hamid Zafarani,&nbsp;Behzad Hassani\",\"doi\":\"10.1007/s10950-023-10149-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent earthquake damage distributions have demonstrated that the influence of local geology on ground shaking is a significant factor in engineering seismology. So, calculating the site effect is a priority to get a trustworthy assessment of the seismic risk for a location, in addition to studying the local seismic sources. The signal amplitude can be amplified by this effect throughout a range of periods. The site effect has been calculated using a variety of computational and experimental techniques, such as seismic noise measurements. In this study, to calculate the site effect, the analysis of accelerograms recorded by Iran’s strong motion network of the Road, Housing, and Urban Development Research Center was used. Here, 294 records from 63 stations were used to calculate the H/V (horizontal to vertical spectral ratio) curve as well as the near-surface high-frequency attenuation parameter (κ<sub>0</sub>). The classification method is based on determining the peak period at each station. To examine site effect consideration, we use the hybrid method composed of the finite difference method for low frequencies (&lt; 1 Hz) and a stochastic finite fault method for high-frequency radiation (&gt; 1 Hz) to simulate an earthquake scenario on the Niavaran fault, which is located north of Tehran, Iran. According to the findings, different site classes cause spectral amplitude variations ranging from 11 to 28% at different periods (<i>T</i> = 0.2, 0.5, 1.0, and 4.0 s).</p></div>\",\"PeriodicalId\":16994,\"journal\":{\"name\":\"Journal of Seismology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Seismology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10950-023-10149-5\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Seismology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10950-023-10149-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

近年来的地震震害分布表明,局部地质对地震动的影响是工程地震学中的一个重要因素。因此,除了研究当地震源外,计算场地效应是获得可靠的地点地震风险评估的优先事项。在一定的周期内,这种效应可以放大信号的幅度。利用各种计算和实验技术,如地震噪声测量,计算了场地效应。在本研究中,为了计算场地效应,使用了伊朗道路、住房和城市发展研究中心强震网络记录的加速度分析。利用63个台站的294条记录,计算了H/V曲线和近地表高频衰减参数κ0。分类方法基于确定各站点的高峰时段。为了检验场地效应的考虑,我们使用低频有限差分法(< 1hz)和高频辐射随机有限断层法(> 1hz)组成的混合方法来模拟位于伊朗德黑兰北部的Niavaran断层的地震情景。结果表明,不同站点类别在不同时段(T = 0.2、0.5、1.0和4.0 s)引起的光谱幅值变化幅度在11% ~ 28%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Site effect estimation in the Tehran basin and its impact on simulation results

Site effect estimation in the Tehran basin and its impact on simulation results

Recent earthquake damage distributions have demonstrated that the influence of local geology on ground shaking is a significant factor in engineering seismology. So, calculating the site effect is a priority to get a trustworthy assessment of the seismic risk for a location, in addition to studying the local seismic sources. The signal amplitude can be amplified by this effect throughout a range of periods. The site effect has been calculated using a variety of computational and experimental techniques, such as seismic noise measurements. In this study, to calculate the site effect, the analysis of accelerograms recorded by Iran’s strong motion network of the Road, Housing, and Urban Development Research Center was used. Here, 294 records from 63 stations were used to calculate the H/V (horizontal to vertical spectral ratio) curve as well as the near-surface high-frequency attenuation parameter (κ0). The classification method is based on determining the peak period at each station. To examine site effect consideration, we use the hybrid method composed of the finite difference method for low frequencies (< 1 Hz) and a stochastic finite fault method for high-frequency radiation (> 1 Hz) to simulate an earthquake scenario on the Niavaran fault, which is located north of Tehran, Iran. According to the findings, different site classes cause spectral amplitude variations ranging from 11 to 28% at different periods (T = 0.2, 0.5, 1.0, and 4.0 s).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Seismology
Journal of Seismology 地学-地球化学与地球物理
CiteScore
3.30
自引率
6.20%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Seismology is an international journal specialising in all observational and theoretical aspects related to earthquake occurrence. Research topics may cover: seismotectonics, seismicity, historical seismicity, seismic source physics, strong ground motion studies, seismic hazard or risk, engineering seismology, physics of fault systems, triggered and induced seismicity, mining seismology, volcano seismology, earthquake prediction, structural investigations ranging from local to regional and global studies with a particular focus on passive experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信