Riesz mv -代数中的熵和动力系统

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Giuseppina Gerarda Barbieri, Mahta Bedrood, Giacomo Lenzi
{"title":"Riesz mv -代数中的熵和动力系统","authors":"Giuseppina Gerarda Barbieri,&nbsp;Mahta Bedrood,&nbsp;Giacomo Lenzi","doi":"10.1007/s10773-023-05367-z","DOIUrl":null,"url":null,"abstract":"<div><p>Kolmogorov and Sinai, using Shannon entropy, defined the entropy of dynamical systems and they proved that the entropy is invariant under isomorphisms of dynamical systems. Amongst entropies, the logical entropy was suggested by Ellerman as a new information measure. In this paper we define partitions of unit that serve as a mathematical model of the random experiment whose results are vaguely defined events. Then we study Entropies and Dynamical Systems, in particular we give different definitions of entropy and we focus our attention on logical entropy. Finally, we prove that the logical entropy of a dynamical system is invariant under isomorphisms of dynamical systems and we give an example which shows that logical entropy allows to distinguish non-isomorphic dynamical systems.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"62 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropies and Dynamical Systems in Riesz MV-algebras\",\"authors\":\"Giuseppina Gerarda Barbieri,&nbsp;Mahta Bedrood,&nbsp;Giacomo Lenzi\",\"doi\":\"10.1007/s10773-023-05367-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Kolmogorov and Sinai, using Shannon entropy, defined the entropy of dynamical systems and they proved that the entropy is invariant under isomorphisms of dynamical systems. Amongst entropies, the logical entropy was suggested by Ellerman as a new information measure. In this paper we define partitions of unit that serve as a mathematical model of the random experiment whose results are vaguely defined events. Then we study Entropies and Dynamical Systems, in particular we give different definitions of entropy and we focus our attention on logical entropy. Finally, we prove that the logical entropy of a dynamical system is invariant under isomorphisms of dynamical systems and we give an example which shows that logical entropy allows to distinguish non-isomorphic dynamical systems.</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"62 6\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-023-05367-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-023-05367-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Kolmogorov和Sinai利用Shannon熵定义了动力系统的熵,并证明了动力系统在同构条件下熵是不变的。在熵中,逻辑熵是Ellerman提出的一种新的信息度量。在本文中,我们定义了作为随机实验的数学模型的单元划分,其结果是模糊定义的事件。然后,我们研究了熵和动力系统,特别是我们给出了熵的不同定义,并重点关注了逻辑熵。最后,我们证明了动力系统在同构条件下的逻辑熵是不变的,并给出了逻辑熵允许区分非同构动力系统的一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropies and Dynamical Systems in Riesz MV-algebras

Kolmogorov and Sinai, using Shannon entropy, defined the entropy of dynamical systems and they proved that the entropy is invariant under isomorphisms of dynamical systems. Amongst entropies, the logical entropy was suggested by Ellerman as a new information measure. In this paper we define partitions of unit that serve as a mathematical model of the random experiment whose results are vaguely defined events. Then we study Entropies and Dynamical Systems, in particular we give different definitions of entropy and we focus our attention on logical entropy. Finally, we prove that the logical entropy of a dynamical system is invariant under isomorphisms of dynamical systems and we give an example which shows that logical entropy allows to distinguish non-isomorphic dynamical systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信