Yang Xu, Sundeep Mangla, Paul Gschneidner, Yong Shi
{"title":"一种用于血管内手术中导管与血管动脉接触的多粗糙度黏附接触模型","authors":"Yang Xu, Sundeep Mangla, Paul Gschneidner, Yong Shi","doi":"10.1007/s10544-023-00646-2","DOIUrl":null,"url":null,"abstract":"<div><h2>Abstract\n</h2><div><p>Contact behaviors of medical devices, such as guidewires and catheters, are critical in endovascular surgeries. In this work, a new method to predict adhesive contact force between catheter and vascular artery is presented. Multi-asperity adhesion on the surface of vascular artery, deformation of asperity and deformation of vascular substrate are all considered. The single asperity behavior is described with Johnson-Kendall-Roberts (JKR) contact model. The multi-asperity behavior is based on Greenwood–Williamson (GW) asperity model. Vascular substrate is considered as elastic bulk substrate and its deformation is determined with Hertzian pressure from asperity on a circular region on the elastic half space. The model shows that the deformation of vascular substrate accounts for the majority of the total contact deformation and significantly affects the predicted contact force. The model is verified with published experimental data. The comparison shows that the model produces very accurate prediction of contact force between catheter and vascular artery when the contact force is compressive. Parametric analysis based on asperity topography is carried out. The analysis shows that the diameter of the circular region of the interface between asperity and vascular substrate has more significant effect on the estimation of contact force than the radius of asperity. Further validation of prediction accuracy of the model under experiment is needed.</p></div></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"25 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-023-00646-2.pdf","citationCount":"0","resultStr":"{\"title\":\"A multi-asperity adhesive contact model for catheter and vascular artery contact in endovascular surgery\",\"authors\":\"Yang Xu, Sundeep Mangla, Paul Gschneidner, Yong Shi\",\"doi\":\"10.1007/s10544-023-00646-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Abstract\\n</h2><div><p>Contact behaviors of medical devices, such as guidewires and catheters, are critical in endovascular surgeries. In this work, a new method to predict adhesive contact force between catheter and vascular artery is presented. Multi-asperity adhesion on the surface of vascular artery, deformation of asperity and deformation of vascular substrate are all considered. The single asperity behavior is described with Johnson-Kendall-Roberts (JKR) contact model. The multi-asperity behavior is based on Greenwood–Williamson (GW) asperity model. Vascular substrate is considered as elastic bulk substrate and its deformation is determined with Hertzian pressure from asperity on a circular region on the elastic half space. The model shows that the deformation of vascular substrate accounts for the majority of the total contact deformation and significantly affects the predicted contact force. The model is verified with published experimental data. The comparison shows that the model produces very accurate prediction of contact force between catheter and vascular artery when the contact force is compressive. Parametric analysis based on asperity topography is carried out. The analysis shows that the diameter of the circular region of the interface between asperity and vascular substrate has more significant effect on the estimation of contact force than the radius of asperity. Further validation of prediction accuracy of the model under experiment is needed.</p></div></div>\",\"PeriodicalId\":490,\"journal\":{\"name\":\"Biomedical Microdevices\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10544-023-00646-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Microdevices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10544-023-00646-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-023-00646-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A multi-asperity adhesive contact model for catheter and vascular artery contact in endovascular surgery
Abstract
Contact behaviors of medical devices, such as guidewires and catheters, are critical in endovascular surgeries. In this work, a new method to predict adhesive contact force between catheter and vascular artery is presented. Multi-asperity adhesion on the surface of vascular artery, deformation of asperity and deformation of vascular substrate are all considered. The single asperity behavior is described with Johnson-Kendall-Roberts (JKR) contact model. The multi-asperity behavior is based on Greenwood–Williamson (GW) asperity model. Vascular substrate is considered as elastic bulk substrate and its deformation is determined with Hertzian pressure from asperity on a circular region on the elastic half space. The model shows that the deformation of vascular substrate accounts for the majority of the total contact deformation and significantly affects the predicted contact force. The model is verified with published experimental data. The comparison shows that the model produces very accurate prediction of contact force between catheter and vascular artery when the contact force is compressive. Parametric analysis based on asperity topography is carried out. The analysis shows that the diameter of the circular region of the interface between asperity and vascular substrate has more significant effect on the estimation of contact force than the radius of asperity. Further validation of prediction accuracy of the model under experiment is needed.
期刊介绍:
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology.
General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.