Fernando Fresno, Ana Iglesias-Juez, Juan M. Coronado
{"title":"光热催化CO2转化:超越催化与光催化","authors":"Fernando Fresno, Ana Iglesias-Juez, Juan M. Coronado","doi":"10.1007/s41061-023-00430-z","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, the combination of both thermal and photochemical contributions has provided interesting opportunities for solar upgrading of catalytic processes. Photothermal catalysis works at the interface between purely photochemical processes, which involve the direct conversion of photon energy into chemical energy, and classical thermal catalysis, in which the catalyst is activated by temperature. Thus, photothermal catalysis acts in two different ways on the energy path of the reaction. This combined catalysis, of which the fundamental principles will be reviewed here, is particularly promising for the activation of small reactive molecules at moderate temperatures compared to thermal catalysis and with higher reaction rates than those attained in photocatalysis, and it has gained a great deal of attention in the last years. Among the different applications of photothermal catalysis, CO<sub>2</sub> conversion is probably the most studied, although reaction mechanisms and photonic-thermal synergy pathways are still quite unclear and, from the reaction route point of view, it can be said that photothermal-catalytic CO<sub>2</sub> reduction processes are still in their infancy. This article intends to provide an overview of the principles underpinning photothermal catalysis and its application to the conversion of CO<sub>2</sub> into useful molecules, with application essentially as fuels but also as chemical building blocks. The most relevant specific cases published to date will be also reviewed from the viewpoint of selectivity towards the most frequent target products.</p></div>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41061-023-00430-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Photothermal Catalytic CO2 Conversion: Beyond Catalysis and Photocatalysis\",\"authors\":\"Fernando Fresno, Ana Iglesias-Juez, Juan M. Coronado\",\"doi\":\"10.1007/s41061-023-00430-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, the combination of both thermal and photochemical contributions has provided interesting opportunities for solar upgrading of catalytic processes. Photothermal catalysis works at the interface between purely photochemical processes, which involve the direct conversion of photon energy into chemical energy, and classical thermal catalysis, in which the catalyst is activated by temperature. Thus, photothermal catalysis acts in two different ways on the energy path of the reaction. This combined catalysis, of which the fundamental principles will be reviewed here, is particularly promising for the activation of small reactive molecules at moderate temperatures compared to thermal catalysis and with higher reaction rates than those attained in photocatalysis, and it has gained a great deal of attention in the last years. Among the different applications of photothermal catalysis, CO<sub>2</sub> conversion is probably the most studied, although reaction mechanisms and photonic-thermal synergy pathways are still quite unclear and, from the reaction route point of view, it can be said that photothermal-catalytic CO<sub>2</sub> reduction processes are still in their infancy. This article intends to provide an overview of the principles underpinning photothermal catalysis and its application to the conversion of CO<sub>2</sub> into useful molecules, with application essentially as fuels but also as chemical building blocks. The most relevant specific cases published to date will be also reviewed from the viewpoint of selectivity towards the most frequent target products.</p></div>\",\"PeriodicalId\":54344,\"journal\":{\"name\":\"Topics in Current Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s41061-023-00430-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Current Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41061-023-00430-z\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-023-00430-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Photothermal Catalytic CO2 Conversion: Beyond Catalysis and Photocatalysis
In recent years, the combination of both thermal and photochemical contributions has provided interesting opportunities for solar upgrading of catalytic processes. Photothermal catalysis works at the interface between purely photochemical processes, which involve the direct conversion of photon energy into chemical energy, and classical thermal catalysis, in which the catalyst is activated by temperature. Thus, photothermal catalysis acts in two different ways on the energy path of the reaction. This combined catalysis, of which the fundamental principles will be reviewed here, is particularly promising for the activation of small reactive molecules at moderate temperatures compared to thermal catalysis and with higher reaction rates than those attained in photocatalysis, and it has gained a great deal of attention in the last years. Among the different applications of photothermal catalysis, CO2 conversion is probably the most studied, although reaction mechanisms and photonic-thermal synergy pathways are still quite unclear and, from the reaction route point of view, it can be said that photothermal-catalytic CO2 reduction processes are still in their infancy. This article intends to provide an overview of the principles underpinning photothermal catalysis and its application to the conversion of CO2 into useful molecules, with application essentially as fuels but also as chemical building blocks. The most relevant specific cases published to date will be also reviewed from the viewpoint of selectivity towards the most frequent target products.
期刊介绍:
Topics in Current Chemistry is a journal that presents critical reviews of present and future trends in modern chemical research. It covers all areas of chemical science, including interactions with related disciplines like biology, medicine, physics, and materials science. The articles in this journal are organized into thematic collections, offering a comprehensive perspective on emerging research to non-specialist readers in academia or industry. Each review article focuses on one aspect of the topic and provides a critical survey, placing it in the context of the collection. Selected examples highlight significant developments from the past 5 to 10 years. Instead of providing an exhaustive summary or extensive data, the articles concentrate on methodological thinking. This approach allows non-specialist readers to understand the information fully and presents the potential prospects for future developments.