Emma-Liina Marjakangas, Gabriel Muñoz, Shaun Turney, Jörg Albrecht, Eike Lena Neuschulz, Matthias Schleuning, Jean-Philippe Lessard
{"title":"基于特征的生态网络组合推理:概念框架与方法工具箱","authors":"Emma-Liina Marjakangas, Gabriel Muñoz, Shaun Turney, Jörg Albrecht, Eike Lena Neuschulz, Matthias Schleuning, Jean-Philippe Lessard","doi":"10.1002/ecm.1502","DOIUrl":null,"url":null,"abstract":"<p>The study of ecological networks has progressively evolved from a mostly descriptive science to one that attempts to elucidate the processes governing the emerging structure of multitrophic communities. To move forward, we propose a conceptual framework using trait-based inference of ecological processes to improve our understanding of network assembly and our ability to predict network reassembly amid global change. The framework formalizes the view that network assembly is governed by processes shaping the composition of resource and consumer communities within trophic levels and those dictating species’ interactions between trophic levels. To illustrate the framework and show its applicability, we (1) use simulations to explore network structures emerging from the interactions of these assembly processes, (2) develop a null model approach to infer the processes underlying network assembly from observational data, and (3) use the null model approach to quantify the relative influence of bottom-up (resource-driven) and top-down (consumer-driven) assembly modes on plant–frugivore networks along an elevational gradient. Simulations suggest that assembly processes governing the formation of pairwise interactions have a greater influence on network structure than those governing the composition of communities within trophic levels. Our case study further shows that the mode of network assembly along the gradient is mainly bottom-up controlled, suggesting that the filtering of plant traits has a larger effect on network structure relative to the filtering of frugivore traits. Combined with increasingly available trait and interaction data, the framework provides a timely toolbox to infer assembly processes operating within and between trophic levels and to test competing hypotheses about the assembly mode of resource–consumer networks along environmental gradients and among biogeographic regions. It is a step toward a more process-based network ecology and complete integration of multitrophic interactions in the prediction of future biodiversity.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Trait-based inference of ecological network assembly: A conceptual framework and methodological toolbox\",\"authors\":\"Emma-Liina Marjakangas, Gabriel Muñoz, Shaun Turney, Jörg Albrecht, Eike Lena Neuschulz, Matthias Schleuning, Jean-Philippe Lessard\",\"doi\":\"10.1002/ecm.1502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study of ecological networks has progressively evolved from a mostly descriptive science to one that attempts to elucidate the processes governing the emerging structure of multitrophic communities. To move forward, we propose a conceptual framework using trait-based inference of ecological processes to improve our understanding of network assembly and our ability to predict network reassembly amid global change. The framework formalizes the view that network assembly is governed by processes shaping the composition of resource and consumer communities within trophic levels and those dictating species’ interactions between trophic levels. To illustrate the framework and show its applicability, we (1) use simulations to explore network structures emerging from the interactions of these assembly processes, (2) develop a null model approach to infer the processes underlying network assembly from observational data, and (3) use the null model approach to quantify the relative influence of bottom-up (resource-driven) and top-down (consumer-driven) assembly modes on plant–frugivore networks along an elevational gradient. Simulations suggest that assembly processes governing the formation of pairwise interactions have a greater influence on network structure than those governing the composition of communities within trophic levels. Our case study further shows that the mode of network assembly along the gradient is mainly bottom-up controlled, suggesting that the filtering of plant traits has a larger effect on network structure relative to the filtering of frugivore traits. Combined with increasingly available trait and interaction data, the framework provides a timely toolbox to infer assembly processes operating within and between trophic levels and to test competing hypotheses about the assembly mode of resource–consumer networks along environmental gradients and among biogeographic regions. It is a step toward a more process-based network ecology and complete integration of multitrophic interactions in the prediction of future biodiversity.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2021-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1502\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1502","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Trait-based inference of ecological network assembly: A conceptual framework and methodological toolbox
The study of ecological networks has progressively evolved from a mostly descriptive science to one that attempts to elucidate the processes governing the emerging structure of multitrophic communities. To move forward, we propose a conceptual framework using trait-based inference of ecological processes to improve our understanding of network assembly and our ability to predict network reassembly amid global change. The framework formalizes the view that network assembly is governed by processes shaping the composition of resource and consumer communities within trophic levels and those dictating species’ interactions between trophic levels. To illustrate the framework and show its applicability, we (1) use simulations to explore network structures emerging from the interactions of these assembly processes, (2) develop a null model approach to infer the processes underlying network assembly from observational data, and (3) use the null model approach to quantify the relative influence of bottom-up (resource-driven) and top-down (consumer-driven) assembly modes on plant–frugivore networks along an elevational gradient. Simulations suggest that assembly processes governing the formation of pairwise interactions have a greater influence on network structure than those governing the composition of communities within trophic levels. Our case study further shows that the mode of network assembly along the gradient is mainly bottom-up controlled, suggesting that the filtering of plant traits has a larger effect on network structure relative to the filtering of frugivore traits. Combined with increasingly available trait and interaction data, the framework provides a timely toolbox to infer assembly processes operating within and between trophic levels and to test competing hypotheses about the assembly mode of resource–consumer networks along environmental gradients and among biogeographic regions. It is a step toward a more process-based network ecology and complete integration of multitrophic interactions in the prediction of future biodiversity.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.