Lartey-Young George, Limin Ma, Weiwei Zhang, Guodong Yao
{"title":"MgO/ fe3o4合成多孔碳在水环境中吸附阿特拉津的参数化建模与分析","authors":"Lartey-Young George, Limin Ma, Weiwei Zhang, Guodong Yao","doi":"10.1186/s12302-023-00725-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Pesticide contamination to water, continues to raise ecotoxicological and human concerns. Studying the application of green adsorbents for removing pesticides from water can significantly reduce ecotoxicological impacts and sustain reclamation of water bodies.</p><h3>Results</h3><p>The current study investigated the adsorption capacity of MgO/Fe<sub>3</sub>O<sub>4</sub> modified coconut shell biochar (MCSB) towards Atrazine removal in water. The prepared adsorbents were structurally constricted and obtained relative amount of mesopore spaces filled by nanoparticles which equally provided active occupancy/binding sites for Atrazine molecule deposition. Equilibrium isotherm studies under temperature regimes of 300 K, 318 K and 328 K were best described by the Freundlich isotherm (<i>R</i><sup>2</sup> = 0.95–0.97) with highest adsorption capacity corresponding to the highest temperature range (328 K) at (<i>K</i><sub>F</sub> = 9.60 L mg<sup>−1</sup>). The kinetics modelling was best fitted to the pseudo second-order kinetic (<i>R</i><sup>2</sup> = 0.90–0.98) reaction pathways revealing that Atrazine uptake and removal occurred majorly over non-homogenous surfaces and high influence of surface functional groups in the process. Atrazine uptake by the adsorbent were mostly efficient within pH ranges of 2–6. Thermodynamics values of free energy Δ<i>G</i>° were negative ranging (Δ<i>G</i>° = − 27.50 to − 29.77 kJ mol<sup>−1</sup>) across the varying reaction temperature indicating an exothermic reaction, while enthalpy (Δ<i>H</i>°) (34.59 kJ mol) and entropy (Δ<i>S</i>°) (90.88 JK<sup>−1</sup>/mol) values were positive revealing a degree of spontaneity which facilitated Atrazine uptake. The adsorbents regeneration capacities over five cycles were observed to decrease proportionally with maximum yields up to 50–60%. Optimization of the adsorption condition by response surface modelling (RSM) and Central Composite Design (CCD) could reveal optimum conditions for Atrazine removal through interaction of different variables at pH = 12, adsorbate initial concentration at 12 mg L<sup>−1</sup>, adsorbate dosage at 0.5 g and reaction temperature at 54 °C. The overall mechanisms of the adsorption could be contributed by availability of surface functional groups on the MCSB surface through increase in hydrophilicity facilitating easy Atrazine molecule attachment via hydrogen bonding and improved surface complexation.</p><h3>Conclusions</h3><p>The as-synthesized MCSB adsorbent could uptake and remove Atrazine in water. A high pH, low concentration, low adsorbent dosage and high reaction temperature could be optimized conditions to attain highest Atrazine removal by the synthesized adsorbent.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":54293,"journal":{"name":"Environmental Sciences Europe","volume":"35 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-023-00725-4","citationCount":"2","resultStr":"{\"title\":\"Parametric modelling and analysis to optimize adsorption of Atrazine by MgO/Fe3O4-synthesized porous carbons in water environment\",\"authors\":\"Lartey-Young George, Limin Ma, Weiwei Zhang, Guodong Yao\",\"doi\":\"10.1186/s12302-023-00725-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Pesticide contamination to water, continues to raise ecotoxicological and human concerns. Studying the application of green adsorbents for removing pesticides from water can significantly reduce ecotoxicological impacts and sustain reclamation of water bodies.</p><h3>Results</h3><p>The current study investigated the adsorption capacity of MgO/Fe<sub>3</sub>O<sub>4</sub> modified coconut shell biochar (MCSB) towards Atrazine removal in water. The prepared adsorbents were structurally constricted and obtained relative amount of mesopore spaces filled by nanoparticles which equally provided active occupancy/binding sites for Atrazine molecule deposition. Equilibrium isotherm studies under temperature regimes of 300 K, 318 K and 328 K were best described by the Freundlich isotherm (<i>R</i><sup>2</sup> = 0.95–0.97) with highest adsorption capacity corresponding to the highest temperature range (328 K) at (<i>K</i><sub>F</sub> = 9.60 L mg<sup>−1</sup>). The kinetics modelling was best fitted to the pseudo second-order kinetic (<i>R</i><sup>2</sup> = 0.90–0.98) reaction pathways revealing that Atrazine uptake and removal occurred majorly over non-homogenous surfaces and high influence of surface functional groups in the process. Atrazine uptake by the adsorbent were mostly efficient within pH ranges of 2–6. Thermodynamics values of free energy Δ<i>G</i>° were negative ranging (Δ<i>G</i>° = − 27.50 to − 29.77 kJ mol<sup>−1</sup>) across the varying reaction temperature indicating an exothermic reaction, while enthalpy (Δ<i>H</i>°) (34.59 kJ mol) and entropy (Δ<i>S</i>°) (90.88 JK<sup>−1</sup>/mol) values were positive revealing a degree of spontaneity which facilitated Atrazine uptake. The adsorbents regeneration capacities over five cycles were observed to decrease proportionally with maximum yields up to 50–60%. Optimization of the adsorption condition by response surface modelling (RSM) and Central Composite Design (CCD) could reveal optimum conditions for Atrazine removal through interaction of different variables at pH = 12, adsorbate initial concentration at 12 mg L<sup>−1</sup>, adsorbate dosage at 0.5 g and reaction temperature at 54 °C. The overall mechanisms of the adsorption could be contributed by availability of surface functional groups on the MCSB surface through increase in hydrophilicity facilitating easy Atrazine molecule attachment via hydrogen bonding and improved surface complexation.</p><h3>Conclusions</h3><p>The as-synthesized MCSB adsorbent could uptake and remove Atrazine in water. A high pH, low concentration, low adsorbent dosage and high reaction temperature could be optimized conditions to attain highest Atrazine removal by the synthesized adsorbent.</p><h3>Graphical Abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":54293,\"journal\":{\"name\":\"Environmental Sciences Europe\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-023-00725-4\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Sciences Europe\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s12302-023-00725-4\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Sciences Europe","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1186/s12302-023-00725-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Parametric modelling and analysis to optimize adsorption of Atrazine by MgO/Fe3O4-synthesized porous carbons in water environment
Background
Pesticide contamination to water, continues to raise ecotoxicological and human concerns. Studying the application of green adsorbents for removing pesticides from water can significantly reduce ecotoxicological impacts and sustain reclamation of water bodies.
Results
The current study investigated the adsorption capacity of MgO/Fe3O4 modified coconut shell biochar (MCSB) towards Atrazine removal in water. The prepared adsorbents were structurally constricted and obtained relative amount of mesopore spaces filled by nanoparticles which equally provided active occupancy/binding sites for Atrazine molecule deposition. Equilibrium isotherm studies under temperature regimes of 300 K, 318 K and 328 K were best described by the Freundlich isotherm (R2 = 0.95–0.97) with highest adsorption capacity corresponding to the highest temperature range (328 K) at (KF = 9.60 L mg−1). The kinetics modelling was best fitted to the pseudo second-order kinetic (R2 = 0.90–0.98) reaction pathways revealing that Atrazine uptake and removal occurred majorly over non-homogenous surfaces and high influence of surface functional groups in the process. Atrazine uptake by the adsorbent were mostly efficient within pH ranges of 2–6. Thermodynamics values of free energy ΔG° were negative ranging (ΔG° = − 27.50 to − 29.77 kJ mol−1) across the varying reaction temperature indicating an exothermic reaction, while enthalpy (ΔH°) (34.59 kJ mol) and entropy (ΔS°) (90.88 JK−1/mol) values were positive revealing a degree of spontaneity which facilitated Atrazine uptake. The adsorbents regeneration capacities over five cycles were observed to decrease proportionally with maximum yields up to 50–60%. Optimization of the adsorption condition by response surface modelling (RSM) and Central Composite Design (CCD) could reveal optimum conditions for Atrazine removal through interaction of different variables at pH = 12, adsorbate initial concentration at 12 mg L−1, adsorbate dosage at 0.5 g and reaction temperature at 54 °C. The overall mechanisms of the adsorption could be contributed by availability of surface functional groups on the MCSB surface through increase in hydrophilicity facilitating easy Atrazine molecule attachment via hydrogen bonding and improved surface complexation.
Conclusions
The as-synthesized MCSB adsorbent could uptake and remove Atrazine in water. A high pH, low concentration, low adsorbent dosage and high reaction temperature could be optimized conditions to attain highest Atrazine removal by the synthesized adsorbent.
期刊介绍:
ESEU is an international journal, focusing primarily on Europe, with a broad scope covering all aspects of environmental sciences, including the main topic regulation.
ESEU will discuss the entanglement between environmental sciences and regulation because, in recent years, there have been misunderstandings and even disagreement between stakeholders in these two areas. ESEU will help to improve the comprehension of issues between environmental sciences and regulation.
ESEU will be an outlet from the German-speaking (DACH) countries to Europe and an inlet from Europe to the DACH countries regarding environmental sciences and regulation.
Moreover, ESEU will facilitate the exchange of ideas and interaction between Europe and the DACH countries regarding environmental regulatory issues.
Although Europe is at the center of ESEU, the journal will not exclude the rest of the world, because regulatory issues pertaining to environmental sciences can be fully seen only from a global perspective.