{"title":"来自生物聚合物的生物塑料:环保和可持续的塑料污染解决方案","authors":"Faizan Muneer, Habibullah Nadeem, Amna Arif, Warda Zaheer","doi":"10.1134/S1811238221010057","DOIUrl":null,"url":null,"abstract":"<p>Global production of synthetic polymers such as plastics is nearly 390 million tons/year, which is creating enormous challenges on a number of frontiers including environment, sustainable development and health. The non-degradability of plastics and petrochemical-based polymers is a huge environmental crisis despite being an industry with billions of dollars share in global economy. Water pollution due to synthetic plastics and related products is evident from the fact that 7 million tons of land based plastic debris enters oceans and water bodies annually endangering the sea life which is not only a concern for the aquatic environment but also for the sea food industry and eventually to human health. Eco-friendly and sustainable polymers from a number of living organisms can be used as an alternative to synthetic polymers. Biopolymers such as starch, cellulose, pectin, keratin, chitin, gelatin and polyhydroxyalkanoates can be obtained from natural biomass sources. All these biopolymers exhibit suitable physiochemical, thermal and mechanical properties that make them suitable for the production of bioplastics that are biobased and biodegradable in nature. Use of biopolymers is not limited to bioplastics but ranges from sustainable production of other products such as bio-implants, biofuels, and medicinal products. In this review, we have discussed comprehensively about the sources of biopolymers, their extraction and purification methods and the reasons that make them efficient biopolymers for the environment.</p>","PeriodicalId":740,"journal":{"name":"Polymer Science, Series C","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Bioplastics from Biopolymers: An Eco-Friendly and Sustainable Solution of Plastic Pollution\",\"authors\":\"Faizan Muneer, Habibullah Nadeem, Amna Arif, Warda Zaheer\",\"doi\":\"10.1134/S1811238221010057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Global production of synthetic polymers such as plastics is nearly 390 million tons/year, which is creating enormous challenges on a number of frontiers including environment, sustainable development and health. The non-degradability of plastics and petrochemical-based polymers is a huge environmental crisis despite being an industry with billions of dollars share in global economy. Water pollution due to synthetic plastics and related products is evident from the fact that 7 million tons of land based plastic debris enters oceans and water bodies annually endangering the sea life which is not only a concern for the aquatic environment but also for the sea food industry and eventually to human health. Eco-friendly and sustainable polymers from a number of living organisms can be used as an alternative to synthetic polymers. Biopolymers such as starch, cellulose, pectin, keratin, chitin, gelatin and polyhydroxyalkanoates can be obtained from natural biomass sources. All these biopolymers exhibit suitable physiochemical, thermal and mechanical properties that make them suitable for the production of bioplastics that are biobased and biodegradable in nature. Use of biopolymers is not limited to bioplastics but ranges from sustainable production of other products such as bio-implants, biofuels, and medicinal products. In this review, we have discussed comprehensively about the sources of biopolymers, their extraction and purification methods and the reasons that make them efficient biopolymers for the environment.</p>\",\"PeriodicalId\":740,\"journal\":{\"name\":\"Polymer Science, Series C\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Science, Series C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1811238221010057\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series C","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S1811238221010057","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Bioplastics from Biopolymers: An Eco-Friendly and Sustainable Solution of Plastic Pollution
Global production of synthetic polymers such as plastics is nearly 390 million tons/year, which is creating enormous challenges on a number of frontiers including environment, sustainable development and health. The non-degradability of plastics and petrochemical-based polymers is a huge environmental crisis despite being an industry with billions of dollars share in global economy. Water pollution due to synthetic plastics and related products is evident from the fact that 7 million tons of land based plastic debris enters oceans and water bodies annually endangering the sea life which is not only a concern for the aquatic environment but also for the sea food industry and eventually to human health. Eco-friendly and sustainable polymers from a number of living organisms can be used as an alternative to synthetic polymers. Biopolymers such as starch, cellulose, pectin, keratin, chitin, gelatin and polyhydroxyalkanoates can be obtained from natural biomass sources. All these biopolymers exhibit suitable physiochemical, thermal and mechanical properties that make them suitable for the production of bioplastics that are biobased and biodegradable in nature. Use of biopolymers is not limited to bioplastics but ranges from sustainable production of other products such as bio-implants, biofuels, and medicinal products. In this review, we have discussed comprehensively about the sources of biopolymers, their extraction and purification methods and the reasons that make them efficient biopolymers for the environment.
期刊介绍:
Polymer Science, Series C (Selected Topics) is a journal published in collaboration with the Russian Academy of Sciences. Series C (Selected Topics) includes experimental and theoretical papers and reviews on the selected actual topics of macromolecular science chosen by the editorial board (1 issue a year). Submission is possible by invitation only. All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed