基于RSVD加权相似度的含噪地震数据速度分析

IF 0.5 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
Yankai Xu, Siyuan Cao, Xiao Pan, Siyuan Chen, Mingjun Cai, Jialiang Zhang
{"title":"基于RSVD加权相似度的含噪地震数据速度分析","authors":"Yankai Xu,&nbsp;Siyuan Cao,&nbsp;Xiao Pan,&nbsp;Siyuan Chen,&nbsp;Mingjun Cai,&nbsp;Jialiang Zhang","doi":"10.1007/s11200-021-0327-y","DOIUrl":null,"url":null,"abstract":"<div><p>The accuracy of velocity spectrum affects the subsequent processing of seismic data. Though the singular value decomposition (SVD) weighted semblance has a higher velocity resolution than conventional semblance, its performance is degraded for noisy seismic data. A rectified SVD weighted semblance method (RSVD), aiming to improve the accuracy of velocity spectrum for seismic data contaminated by noise, is proposed. In this approach, the weighting function is constructed from the first two singular values and their mean square error obtained via SVD of noisy seismic data after normal moveout (NMO) with scanning velocity. Synthetic and field examples demonstrate that the proposed method performs better than the SVD weighted semblance in enhancing the accuracy of velocity spectra for noisy near-offset common midpoint gathers in layered isotropic media.</p></div>","PeriodicalId":22001,"journal":{"name":"Studia Geophysica et Geodaetica","volume":"66 1-2","pages":"48 - 61"},"PeriodicalIF":0.5000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Velocity analysis of noisy seismic data based on RSVD weighted semblance\",\"authors\":\"Yankai Xu,&nbsp;Siyuan Cao,&nbsp;Xiao Pan,&nbsp;Siyuan Chen,&nbsp;Mingjun Cai,&nbsp;Jialiang Zhang\",\"doi\":\"10.1007/s11200-021-0327-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The accuracy of velocity spectrum affects the subsequent processing of seismic data. Though the singular value decomposition (SVD) weighted semblance has a higher velocity resolution than conventional semblance, its performance is degraded for noisy seismic data. A rectified SVD weighted semblance method (RSVD), aiming to improve the accuracy of velocity spectrum for seismic data contaminated by noise, is proposed. In this approach, the weighting function is constructed from the first two singular values and their mean square error obtained via SVD of noisy seismic data after normal moveout (NMO) with scanning velocity. Synthetic and field examples demonstrate that the proposed method performs better than the SVD weighted semblance in enhancing the accuracy of velocity spectra for noisy near-offset common midpoint gathers in layered isotropic media.</p></div>\",\"PeriodicalId\":22001,\"journal\":{\"name\":\"Studia Geophysica et Geodaetica\",\"volume\":\"66 1-2\",\"pages\":\"48 - 61\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geophysica et Geodaetica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11200-021-0327-y\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geophysica et Geodaetica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11200-021-0327-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

速度谱的准确性直接影响到地震资料的后续处理。奇异值分解(SVD)加权似然方法虽然具有比常规似然方法更高的速度分辨率,但在有噪声的地震资料中,其性能有所下降。为了提高受噪声污染的地震资料的速度谱精度,提出了一种校正奇异值分解加权相似法(RSVD)。该方法通过对含噪地震资料进行正常移出(NMO)后随扫描速度的奇异值分解,得到前两个奇异值及其均方误差,以此构造加权函数。综合算例和现场算例表明,该方法在提高层状各向同性介质中噪声近偏移共同中点聚集速度谱精度方面优于SVD加权相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Velocity analysis of noisy seismic data based on RSVD weighted semblance

The accuracy of velocity spectrum affects the subsequent processing of seismic data. Though the singular value decomposition (SVD) weighted semblance has a higher velocity resolution than conventional semblance, its performance is degraded for noisy seismic data. A rectified SVD weighted semblance method (RSVD), aiming to improve the accuracy of velocity spectrum for seismic data contaminated by noise, is proposed. In this approach, the weighting function is constructed from the first two singular values and their mean square error obtained via SVD of noisy seismic data after normal moveout (NMO) with scanning velocity. Synthetic and field examples demonstrate that the proposed method performs better than the SVD weighted semblance in enhancing the accuracy of velocity spectra for noisy near-offset common midpoint gathers in layered isotropic media.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Geophysica et Geodaetica
Studia Geophysica et Geodaetica 地学-地球化学与地球物理
CiteScore
1.90
自引率
0.00%
发文量
8
审稿时长
6-12 weeks
期刊介绍: Studia geophysica et geodaetica is an international journal covering all aspects of geophysics, meteorology and climatology, and of geodesy. Published by the Institute of Geophysics of the Academy of Sciences of the Czech Republic, it has a long tradition, being published quarterly since 1956. Studia publishes theoretical and methodological contributions, which are of interest for academia as well as industry. The journal offers fast publication of contributions in regular as well as topical issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信