O. V. Yurasova, D. A. Samieva, E. S. Koshel, Yu. A. Karpov
{"title":"医用检测闪烁晶体用高纯稀土金属氧化物的生产与质量控制","authors":"O. V. Yurasova, D. A. Samieva, E. S. Koshel, Yu. A. Karpov","doi":"10.3103/S1067821222020122","DOIUrl":null,"url":null,"abstract":"<p>The positron emission tomography detection device uses scintillator crystals to provide high image quality. Cerium-activated lutetium orthosilicates are promising crystals for PET detectors. The optical properties of the resulting scintillator crystals directly depend on the impurity composition of the starting materials; therefore, rather stringent requirements are set for them: the content of the basic substance Lu<sub>2</sub>O<sub>3</sub> is 99.999 wt % and CeO<sub>2</sub> is 99.99 wt %. As a starting material for obtaining lutetium oxide of the required purity, we used its concentrate with a basic substance content of 99.1 wt %, to obtain cerium oxide, REM carbonates containing up to 54% cerium in the composition. The paper presents the schemes of the technological process for obtaining high-purity Lu<sub>2</sub>O<sub>3</sub> and CeO<sub>2</sub> based on a combination of methods of extraction and ion exchange. Extraction purification of lutetium and cerium from accompanying rare-earth impurities was carried out using Aliquat 336 and tri-n-butyl phosphate, respectively. In the work, the main modes of operation of the extraction cascades were calculated; the total number of stages for purifying lutetium was 17; for purifying cerium, it was 20. The technology for the purification of lutetium oxide and cerium oxide consists of a combination of purification methods and varying cycles depending on the content of impurities; in this regard, it is necessary to control the quality of the resulting substances practically after each stage. Analytical control of the chemical purity of technological products was carried out by mass spectrometry with inductively coupled and spark sources of sample excitation.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production and Quality Control of High-Purity Rare-Earth Metal Oxides for Scintillator Crystals of Detecting Medical Systems\",\"authors\":\"O. V. Yurasova, D. A. Samieva, E. S. Koshel, Yu. A. Karpov\",\"doi\":\"10.3103/S1067821222020122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The positron emission tomography detection device uses scintillator crystals to provide high image quality. Cerium-activated lutetium orthosilicates are promising crystals for PET detectors. The optical properties of the resulting scintillator crystals directly depend on the impurity composition of the starting materials; therefore, rather stringent requirements are set for them: the content of the basic substance Lu<sub>2</sub>O<sub>3</sub> is 99.999 wt % and CeO<sub>2</sub> is 99.99 wt %. As a starting material for obtaining lutetium oxide of the required purity, we used its concentrate with a basic substance content of 99.1 wt %, to obtain cerium oxide, REM carbonates containing up to 54% cerium in the composition. The paper presents the schemes of the technological process for obtaining high-purity Lu<sub>2</sub>O<sub>3</sub> and CeO<sub>2</sub> based on a combination of methods of extraction and ion exchange. Extraction purification of lutetium and cerium from accompanying rare-earth impurities was carried out using Aliquat 336 and tri-n-butyl phosphate, respectively. In the work, the main modes of operation of the extraction cascades were calculated; the total number of stages for purifying lutetium was 17; for purifying cerium, it was 20. The technology for the purification of lutetium oxide and cerium oxide consists of a combination of purification methods and varying cycles depending on the content of impurities; in this regard, it is necessary to control the quality of the resulting substances practically after each stage. Analytical control of the chemical purity of technological products was carried out by mass spectrometry with inductively coupled and spark sources of sample excitation.</p>\",\"PeriodicalId\":765,\"journal\":{\"name\":\"Russian Journal of Non-Ferrous Metals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Non-Ferrous Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1067821222020122\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1067821222020122","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Production and Quality Control of High-Purity Rare-Earth Metal Oxides for Scintillator Crystals of Detecting Medical Systems
The positron emission tomography detection device uses scintillator crystals to provide high image quality. Cerium-activated lutetium orthosilicates are promising crystals for PET detectors. The optical properties of the resulting scintillator crystals directly depend on the impurity composition of the starting materials; therefore, rather stringent requirements are set for them: the content of the basic substance Lu2O3 is 99.999 wt % and CeO2 is 99.99 wt %. As a starting material for obtaining lutetium oxide of the required purity, we used its concentrate with a basic substance content of 99.1 wt %, to obtain cerium oxide, REM carbonates containing up to 54% cerium in the composition. The paper presents the schemes of the technological process for obtaining high-purity Lu2O3 and CeO2 based on a combination of methods of extraction and ion exchange. Extraction purification of lutetium and cerium from accompanying rare-earth impurities was carried out using Aliquat 336 and tri-n-butyl phosphate, respectively. In the work, the main modes of operation of the extraction cascades were calculated; the total number of stages for purifying lutetium was 17; for purifying cerium, it was 20. The technology for the purification of lutetium oxide and cerium oxide consists of a combination of purification methods and varying cycles depending on the content of impurities; in this regard, it is necessary to control the quality of the resulting substances practically after each stage. Analytical control of the chemical purity of technological products was carried out by mass spectrometry with inductively coupled and spark sources of sample excitation.
期刊介绍:
Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.