{"title":"氯化物升华焙烧法从花瓣石矿中提取锂","authors":"I. M. Komelin","doi":"10.3103/S1067821222020079","DOIUrl":null,"url":null,"abstract":"<p>Semi-industrial tests of the chloride sublimation technology for extracting lithium from petalite ore with concurrent production of cement clinker have been carried out. The main technical and economic indicators of production of lithium carbonate have been determined. Chloride sublimation roasting method allows combining ore roasting and lithium sublimation with the process of obtaining (roasting) Portland cement clinker. Thus, it becomes possible to distribute energy costs for high-temperature roasting over a much larger volume of products: clinker and lithium salts. The recovered lithium in the form of lithium chloride vapor is captured by an aqueous absorbing solution, which has a much smaller volume as compared to the volumes of leaching solutions in lime, sulfuric acid, or autoclave alkaline technologies. Correspondingly, the flows of the solutions being processed are reduced, which significantly saves reagents and energy during their processing and considerably reduces the capital costs of tank equipment. Owing to the high content of aluminum and silicon oxides in lithium aluminosilicate ores, it is possible to use them in the production of cement clinker instead of the clay component of the charge.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extraction of Lithium from Petalite Ore by Chloride Sublimation Roasting\",\"authors\":\"I. M. Komelin\",\"doi\":\"10.3103/S1067821222020079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Semi-industrial tests of the chloride sublimation technology for extracting lithium from petalite ore with concurrent production of cement clinker have been carried out. The main technical and economic indicators of production of lithium carbonate have been determined. Chloride sublimation roasting method allows combining ore roasting and lithium sublimation with the process of obtaining (roasting) Portland cement clinker. Thus, it becomes possible to distribute energy costs for high-temperature roasting over a much larger volume of products: clinker and lithium salts. The recovered lithium in the form of lithium chloride vapor is captured by an aqueous absorbing solution, which has a much smaller volume as compared to the volumes of leaching solutions in lime, sulfuric acid, or autoclave alkaline technologies. Correspondingly, the flows of the solutions being processed are reduced, which significantly saves reagents and energy during their processing and considerably reduces the capital costs of tank equipment. Owing to the high content of aluminum and silicon oxides in lithium aluminosilicate ores, it is possible to use them in the production of cement clinker instead of the clay component of the charge.</p>\",\"PeriodicalId\":765,\"journal\":{\"name\":\"Russian Journal of Non-Ferrous Metals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Non-Ferrous Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1067821222020079\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1067821222020079","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Extraction of Lithium from Petalite Ore by Chloride Sublimation Roasting
Semi-industrial tests of the chloride sublimation technology for extracting lithium from petalite ore with concurrent production of cement clinker have been carried out. The main technical and economic indicators of production of lithium carbonate have been determined. Chloride sublimation roasting method allows combining ore roasting and lithium sublimation with the process of obtaining (roasting) Portland cement clinker. Thus, it becomes possible to distribute energy costs for high-temperature roasting over a much larger volume of products: clinker and lithium salts. The recovered lithium in the form of lithium chloride vapor is captured by an aqueous absorbing solution, which has a much smaller volume as compared to the volumes of leaching solutions in lime, sulfuric acid, or autoclave alkaline technologies. Correspondingly, the flows of the solutions being processed are reduced, which significantly saves reagents and energy during their processing and considerably reduces the capital costs of tank equipment. Owing to the high content of aluminum and silicon oxides in lithium aluminosilicate ores, it is possible to use them in the production of cement clinker instead of the clay component of the charge.
期刊介绍:
Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.