{"title":"镁离子与生物聚合物相互作用的平均场理论:溶菌酶的例子","authors":"Theo Odijk","doi":"10.1007/s10867-021-09587-4","DOIUrl":null,"url":null,"abstract":"<div><p>A statistical theory is presented of the magnesium ion interacting with lysozyme under conditions where the latter is positively charged. Temporarily assuming magnesium is not noncovalently bound to the protein, I solve the nonlinear Poisson–Boltzmann equation accurately and uniformly in a perturbative fashion. The resulting expression for the effective charge, which is larger than nominal owing to overshooting, is subtle and cannot be asymptotically expanded at high ionic strengths that are practical. An adhesive potential taken from earlier work together with the assumption of possibly bound magnesium is then fitted to be in accord with measurements of the second virial coefficient by Tessier et al. The resulting numbers of bound magnesium ions as a function of MgBr<span>\\(_2\\)</span> concentration are entirely reasonable compared with densitometry measurements.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10867-021-09587-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Mean-field theory of the interaction of the magnesium ion with biopolymers: the case of lysozyme\",\"authors\":\"Theo Odijk\",\"doi\":\"10.1007/s10867-021-09587-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A statistical theory is presented of the magnesium ion interacting with lysozyme under conditions where the latter is positively charged. Temporarily assuming magnesium is not noncovalently bound to the protein, I solve the nonlinear Poisson–Boltzmann equation accurately and uniformly in a perturbative fashion. The resulting expression for the effective charge, which is larger than nominal owing to overshooting, is subtle and cannot be asymptotically expanded at high ionic strengths that are practical. An adhesive potential taken from earlier work together with the assumption of possibly bound magnesium is then fitted to be in accord with measurements of the second virial coefficient by Tessier et al. The resulting numbers of bound magnesium ions as a function of MgBr<span>\\\\(_2\\\\)</span> concentration are entirely reasonable compared with densitometry measurements.</p></div>\",\"PeriodicalId\":612,\"journal\":{\"name\":\"Journal of Biological Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10867-021-09587-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Physics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10867-021-09587-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-021-09587-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Mean-field theory of the interaction of the magnesium ion with biopolymers: the case of lysozyme
A statistical theory is presented of the magnesium ion interacting with lysozyme under conditions where the latter is positively charged. Temporarily assuming magnesium is not noncovalently bound to the protein, I solve the nonlinear Poisson–Boltzmann equation accurately and uniformly in a perturbative fashion. The resulting expression for the effective charge, which is larger than nominal owing to overshooting, is subtle and cannot be asymptotically expanded at high ionic strengths that are practical. An adhesive potential taken from earlier work together with the assumption of possibly bound magnesium is then fitted to be in accord with measurements of the second virial coefficient by Tessier et al. The resulting numbers of bound magnesium ions as a function of MgBr\(_2\) concentration are entirely reasonable compared with densitometry measurements.
期刊介绍:
Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials.
The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.