{"title":"等离子体增强化学气相沉积聚(2,2,3,4,4,4-六氟丙烯酸丁酯)薄膜†","authors":"Mustafa Karaman, Ezgi Yenice","doi":"10.1002/cvde.201507168","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <p>The synthesis of poly(2,2,3,4,4,4-hexafluorobutyl acrylate) (PHFBA) thin films using plasma enhanced chemical vapor deposition (PECVD) method is reported. PHFBA is a non-toxic and low surface energy polymer containing a –CF<sub>3</sub> end group, which makes PHFBA a suitable hydrophobic finish. The effects of plasma power and substrate temperature on chemical and morphological structure of as-deposited films are studied. A greater retention of the perfluoroalkyl functionality is found for the depositions carried out at low powers and high temperatures. PHFBA thin films show superhydrophobic properties when deposited on rough fiber mat surfaces with observed water contact angles greater than 150 degrees.</p>\n </section>\n </div>","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":"21 7-8-9","pages":"188-195"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201507168","citationCount":"16","resultStr":"{\"title\":\"Plasma Enhanced Chemical Vapor Deposition of Poly(2,2,3,4,4,4-hexafluorobutyl acrylate) Thin Films†\",\"authors\":\"Mustafa Karaman, Ezgi Yenice\",\"doi\":\"10.1002/cvde.201507168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n <p>The synthesis of poly(2,2,3,4,4,4-hexafluorobutyl acrylate) (PHFBA) thin films using plasma enhanced chemical vapor deposition (PECVD) method is reported. PHFBA is a non-toxic and low surface energy polymer containing a –CF<sub>3</sub> end group, which makes PHFBA a suitable hydrophobic finish. The effects of plasma power and substrate temperature on chemical and morphological structure of as-deposited films are studied. A greater retention of the perfluoroalkyl functionality is found for the depositions carried out at low powers and high temperatures. PHFBA thin films show superhydrophobic properties when deposited on rough fiber mat surfaces with observed water contact angles greater than 150 degrees.</p>\\n </section>\\n </div>\",\"PeriodicalId\":10093,\"journal\":{\"name\":\"Chemical Vapor Deposition\",\"volume\":\"21 7-8-9\",\"pages\":\"188-195\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cvde.201507168\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Vapor Deposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cvde.201507168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Vapor Deposition","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cvde.201507168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Plasma Enhanced Chemical Vapor Deposition of Poly(2,2,3,4,4,4-hexafluorobutyl acrylate) Thin Films†
The synthesis of poly(2,2,3,4,4,4-hexafluorobutyl acrylate) (PHFBA) thin films using plasma enhanced chemical vapor deposition (PECVD) method is reported. PHFBA is a non-toxic and low surface energy polymer containing a –CF3 end group, which makes PHFBA a suitable hydrophobic finish. The effects of plasma power and substrate temperature on chemical and morphological structure of as-deposited films are studied. A greater retention of the perfluoroalkyl functionality is found for the depositions carried out at low powers and high temperatures. PHFBA thin films show superhydrophobic properties when deposited on rough fiber mat surfaces with observed water contact angles greater than 150 degrees.
期刊介绍:
Chemical Vapor Deposition (CVD) publishes Reviews, Short Communications, and Full Papers on all aspects of chemical vapor deposition and related technologies, along with other articles presenting opinion, news, conference information, and book reviews. All papers are peer-reviewed. The journal provides a unified forum for chemists, physicists, and engineers whose publications on chemical vapor deposition have in the past been spread over journals covering inorganic chemistry, materials chemistry, organometallics, applied physics and semiconductor technology, thin films, and ceramic processing.