Mikko Kaipio, Timothee Blanquart, Manish Banerjee, Ke Xu, Jaakko Niinistö, Valentino Longo, Kenichiro Mizohata, Anjana Devi, Mikko Ritala, Markku Leskelä
{"title":"杂疏胍前驱体制备TiO2和ZrO2薄膜的原子层沉积研究","authors":"Mikko Kaipio, Timothee Blanquart, Manish Banerjee, Ke Xu, Jaakko Niinistö, Valentino Longo, Kenichiro Mizohata, Anjana Devi, Mikko Ritala, Markku Leskelä","doi":"10.1002/cvde.201407115","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>In this study the atomic layer deposition (ALD) of TiO<sub>2</sub> and ZrO<sub>2</sub> using two heteroleptic amido-guanidinate precursors, [Ti(NEtMe)<sub>3</sub>(guan-NEtMe)] and [Zr(NEtMe)<sub>3</sub>(guan-NEtMe)], together with water or ozone as oxygen sources, are investigated. All processes exhibit self-limiting growth at a deposition temperature of 275°C. The zirconium precursor especially gives high growth rates (0.8/1.0 Å per cycle with H<sub>2</sub>O/O<sub>3</sub>). The films are also relatively smooth, as determined by atomic force microscopy (AFM). The composition of the films is examined using X-ray photoelectron spectroscopy (XPS) and time of flight elastic recoil detection analysis (TOF-ERDA). When using ozone as the oxygen source the films present very high purity. The results are compared and discussed with respect to earlier studies on guanidinate, as well as homoleptic amido precursors.</p>\n </section>\n </div>","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":"20 7-8-9","pages":"209-216"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201407115","citationCount":"8","resultStr":"{\"title\":\"Atomic Layer Deposition of TiO2 and ZrO2 Thin Films Using Heteroleptic Guanidinate Precursors†\",\"authors\":\"Mikko Kaipio, Timothee Blanquart, Manish Banerjee, Ke Xu, Jaakko Niinistö, Valentino Longo, Kenichiro Mizohata, Anjana Devi, Mikko Ritala, Markku Leskelä\",\"doi\":\"10.1002/cvde.201407115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>In this study the atomic layer deposition (ALD) of TiO<sub>2</sub> and ZrO<sub>2</sub> using two heteroleptic amido-guanidinate precursors, [Ti(NEtMe)<sub>3</sub>(guan-NEtMe)] and [Zr(NEtMe)<sub>3</sub>(guan-NEtMe)], together with water or ozone as oxygen sources, are investigated. All processes exhibit self-limiting growth at a deposition temperature of 275°C. The zirconium precursor especially gives high growth rates (0.8/1.0 Å per cycle with H<sub>2</sub>O/O<sub>3</sub>). The films are also relatively smooth, as determined by atomic force microscopy (AFM). The composition of the films is examined using X-ray photoelectron spectroscopy (XPS) and time of flight elastic recoil detection analysis (TOF-ERDA). When using ozone as the oxygen source the films present very high purity. The results are compared and discussed with respect to earlier studies on guanidinate, as well as homoleptic amido precursors.</p>\\n </section>\\n </div>\",\"PeriodicalId\":10093,\"journal\":{\"name\":\"Chemical Vapor Deposition\",\"volume\":\"20 7-8-9\",\"pages\":\"209-216\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cvde.201407115\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Vapor Deposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cvde.201407115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Vapor Deposition","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cvde.201407115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Atomic Layer Deposition of TiO2 and ZrO2 Thin Films Using Heteroleptic Guanidinate Precursors†
In this study the atomic layer deposition (ALD) of TiO2 and ZrO2 using two heteroleptic amido-guanidinate precursors, [Ti(NEtMe)3(guan-NEtMe)] and [Zr(NEtMe)3(guan-NEtMe)], together with water or ozone as oxygen sources, are investigated. All processes exhibit self-limiting growth at a deposition temperature of 275°C. The zirconium precursor especially gives high growth rates (0.8/1.0 Å per cycle with H2O/O3). The films are also relatively smooth, as determined by atomic force microscopy (AFM). The composition of the films is examined using X-ray photoelectron spectroscopy (XPS) and time of flight elastic recoil detection analysis (TOF-ERDA). When using ozone as the oxygen source the films present very high purity. The results are compared and discussed with respect to earlier studies on guanidinate, as well as homoleptic amido precursors.
期刊介绍:
Chemical Vapor Deposition (CVD) publishes Reviews, Short Communications, and Full Papers on all aspects of chemical vapor deposition and related technologies, along with other articles presenting opinion, news, conference information, and book reviews. All papers are peer-reviewed. The journal provides a unified forum for chemists, physicists, and engineers whose publications on chemical vapor deposition have in the past been spread over journals covering inorganic chemistry, materials chemistry, organometallics, applied physics and semiconductor technology, thin films, and ceramic processing.