Biben Wang, Kun Zheng, Qijin Cheng, Li Wang, Chengcheng Chen, Guobo Dong
{"title":"热丝CVD制备类石墨烯纳米片的无催化剂生长机理和结构","authors":"Biben Wang, Kun Zheng, Qijin Cheng, Li Wang, Chengcheng Chen, Guobo Dong","doi":"10.1002/cvde.201407105","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <p>We report on a simple and effective method of synthesizing graphene-like nanosheets on silicon substrates pre-deposited with a carbon film or carbon nanodots in hot-filament(HF)CVD from a methane precursor. The results of field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and micro-Raman spectroscopy (RS) indicate that the structure of graphene-like nanosheets is changed with the flow rate change of methane and the pretreatment of the substrate surface. The catalyst-free growth of graphene-like nanosheets is related to the diffusion and assembly of carbon atoms on the substrate surface and the separation of graphene-like nanosheets from the substrate surface.</p>\n </section>\n </div>","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":"20 10-11-12","pages":"345-351"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201407105","citationCount":"7","resultStr":"{\"title\":\"Catalyst-free Growth Mechanism and Structure of Graphene-like Nanosheets Formed by Hot-Filament CVD†\",\"authors\":\"Biben Wang, Kun Zheng, Qijin Cheng, Li Wang, Chengcheng Chen, Guobo Dong\",\"doi\":\"10.1002/cvde.201407105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n <p>We report on a simple and effective method of synthesizing graphene-like nanosheets on silicon substrates pre-deposited with a carbon film or carbon nanodots in hot-filament(HF)CVD from a methane precursor. The results of field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and micro-Raman spectroscopy (RS) indicate that the structure of graphene-like nanosheets is changed with the flow rate change of methane and the pretreatment of the substrate surface. The catalyst-free growth of graphene-like nanosheets is related to the diffusion and assembly of carbon atoms on the substrate surface and the separation of graphene-like nanosheets from the substrate surface.</p>\\n </section>\\n </div>\",\"PeriodicalId\":10093,\"journal\":{\"name\":\"Chemical Vapor Deposition\",\"volume\":\"20 10-11-12\",\"pages\":\"345-351\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cvde.201407105\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Vapor Deposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cvde.201407105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Vapor Deposition","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cvde.201407105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Catalyst-free Growth Mechanism and Structure of Graphene-like Nanosheets Formed by Hot-Filament CVD†
We report on a simple and effective method of synthesizing graphene-like nanosheets on silicon substrates pre-deposited with a carbon film or carbon nanodots in hot-filament(HF)CVD from a methane precursor. The results of field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and micro-Raman spectroscopy (RS) indicate that the structure of graphene-like nanosheets is changed with the flow rate change of methane and the pretreatment of the substrate surface. The catalyst-free growth of graphene-like nanosheets is related to the diffusion and assembly of carbon atoms on the substrate surface and the separation of graphene-like nanosheets from the substrate surface.
期刊介绍:
Chemical Vapor Deposition (CVD) publishes Reviews, Short Communications, and Full Papers on all aspects of chemical vapor deposition and related technologies, along with other articles presenting opinion, news, conference information, and book reviews. All papers are peer-reviewed. The journal provides a unified forum for chemists, physicists, and engineers whose publications on chemical vapor deposition have in the past been spread over journals covering inorganic chemistry, materials chemistry, organometallics, applied physics and semiconductor technology, thin films, and ceramic processing.