{"title":"用APCVD法研究衬底相对源位置对纯纳米氧化锡光电性能和结构性能的影响","authors":"Masoudeh Maleki, Seyed Mohammad Rozati","doi":"10.1002/cvde.201407103","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <p>Pure tin oxide (TO) films are deposited onto glass substrates at various substrate angles relative to the source position by a simple and inexpensive method of atmospheric pressure (AP)CVD. The deposition temperature is constant at about 500°C, and oxygen with a flow rate of 100 sccm is used as both the carrier gas and the oxidizing agent. Investigation of the sheet resistance shows that resistivity varies between 106 and. 241 Ω/□. X-ray diffraction (XRD) also reveals that the structure is polycrystalline with the preferred orientation of (110) for all films deposited at the various substrate angles. Scanning electron microscopy (SEM) images also reveal a uniform and impacted structure on the surface of all the films. Optical properties show clear changes as a result of the substrate position versus the source.</p>\n </section>\n </div>","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":"20 10-11-12","pages":"352-355"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201407103","citationCount":"3","resultStr":"{\"title\":\"Investigation of the Effect of the Substrate Position Relative to the Source on the Optoelectrical and Structural Properties of Pure Nanostructured Tin Oxide by APCVD†\",\"authors\":\"Masoudeh Maleki, Seyed Mohammad Rozati\",\"doi\":\"10.1002/cvde.201407103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n <p>Pure tin oxide (TO) films are deposited onto glass substrates at various substrate angles relative to the source position by a simple and inexpensive method of atmospheric pressure (AP)CVD. The deposition temperature is constant at about 500°C, and oxygen with a flow rate of 100 sccm is used as both the carrier gas and the oxidizing agent. Investigation of the sheet resistance shows that resistivity varies between 106 and. 241 Ω/□. X-ray diffraction (XRD) also reveals that the structure is polycrystalline with the preferred orientation of (110) for all films deposited at the various substrate angles. Scanning electron microscopy (SEM) images also reveal a uniform and impacted structure on the surface of all the films. Optical properties show clear changes as a result of the substrate position versus the source.</p>\\n </section>\\n </div>\",\"PeriodicalId\":10093,\"journal\":{\"name\":\"Chemical Vapor Deposition\",\"volume\":\"20 10-11-12\",\"pages\":\"352-355\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cvde.201407103\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Vapor Deposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cvde.201407103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Vapor Deposition","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cvde.201407103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of the Effect of the Substrate Position Relative to the Source on the Optoelectrical and Structural Properties of Pure Nanostructured Tin Oxide by APCVD†
Pure tin oxide (TO) films are deposited onto glass substrates at various substrate angles relative to the source position by a simple and inexpensive method of atmospheric pressure (AP)CVD. The deposition temperature is constant at about 500°C, and oxygen with a flow rate of 100 sccm is used as both the carrier gas and the oxidizing agent. Investigation of the sheet resistance shows that resistivity varies between 106 and. 241 Ω/□. X-ray diffraction (XRD) also reveals that the structure is polycrystalline with the preferred orientation of (110) for all films deposited at the various substrate angles. Scanning electron microscopy (SEM) images also reveal a uniform and impacted structure on the surface of all the films. Optical properties show clear changes as a result of the substrate position versus the source.
期刊介绍:
Chemical Vapor Deposition (CVD) publishes Reviews, Short Communications, and Full Papers on all aspects of chemical vapor deposition and related technologies, along with other articles presenting opinion, news, conference information, and book reviews. All papers are peer-reviewed. The journal provides a unified forum for chemists, physicists, and engineers whose publications on chemical vapor deposition have in the past been spread over journals covering inorganic chemistry, materials chemistry, organometallics, applied physics and semiconductor technology, thin films, and ceramic processing.