Zewen Zuo, Guanglei Cui, Yu Wang, Junzhuan Wang, Lin Pu, Yi Shi
{"title":"非晶硅层对氢化微晶硅成核速率的影响","authors":"Zewen Zuo, Guanglei Cui, Yu Wang, Junzhuan Wang, Lin Pu, Yi Shi","doi":"10.1002/cvde.201307003","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>The nucleation rate of hydrogenated microcrystalline silicon (µc-Si:H) films deposited by plasma-enhanced (PE)CVD on hydrogenated amorphous silicon (a-Si:H) substrates is investigated through structural and electrical characterization, with special attention paid to the initial growth stage of µc-Si:H films. It is found that the nucleation rate of µc-Si is dependent on the thickness of the a-Si:H substrate. The µc-Si:H film exhibits a rapid nucleation on a thin a-Si:H layer, leaving a thin incubation layer at the µc-Si/substrate interface. This substrate-thickness dependence of the nucleation rate is proposed to be correlated with the stress inside the a-Si:H layer. The high interfacial stress existing in the thin a-Si:H layer facilitates the formation of high concentration, strained Si-Si bonds, which are responsible for the rapid µc-Si nucleation. The thick a-Si:H layer relaxes the interfacial stress through the formation of islands in the Stranski-Krastanow (S-K) growth mode, while the intrinsic stress is still low, resulting in a long nucleation process allowing for the intrinsic compressive stress to be accumulated that is necessary for the µc-Si deposited on it.</p>\n </section>\n </div>","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":"19 10-11-12","pages":"363-366"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201307003","citationCount":"3","resultStr":"{\"title\":\"Substrate-thickness Dependence of Hydrogenated Microcrystalline Silicon Nucleation Rate on Amorphous Silicon Layer†\",\"authors\":\"Zewen Zuo, Guanglei Cui, Yu Wang, Junzhuan Wang, Lin Pu, Yi Shi\",\"doi\":\"10.1002/cvde.201307003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>The nucleation rate of hydrogenated microcrystalline silicon (µc-Si:H) films deposited by plasma-enhanced (PE)CVD on hydrogenated amorphous silicon (a-Si:H) substrates is investigated through structural and electrical characterization, with special attention paid to the initial growth stage of µc-Si:H films. It is found that the nucleation rate of µc-Si is dependent on the thickness of the a-Si:H substrate. The µc-Si:H film exhibits a rapid nucleation on a thin a-Si:H layer, leaving a thin incubation layer at the µc-Si/substrate interface. This substrate-thickness dependence of the nucleation rate is proposed to be correlated with the stress inside the a-Si:H layer. The high interfacial stress existing in the thin a-Si:H layer facilitates the formation of high concentration, strained Si-Si bonds, which are responsible for the rapid µc-Si nucleation. The thick a-Si:H layer relaxes the interfacial stress through the formation of islands in the Stranski-Krastanow (S-K) growth mode, while the intrinsic stress is still low, resulting in a long nucleation process allowing for the intrinsic compressive stress to be accumulated that is necessary for the µc-Si deposited on it.</p>\\n </section>\\n </div>\",\"PeriodicalId\":10093,\"journal\":{\"name\":\"Chemical Vapor Deposition\",\"volume\":\"19 10-11-12\",\"pages\":\"363-366\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cvde.201307003\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Vapor Deposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cvde.201307003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Vapor Deposition","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cvde.201307003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Substrate-thickness Dependence of Hydrogenated Microcrystalline Silicon Nucleation Rate on Amorphous Silicon Layer†
The nucleation rate of hydrogenated microcrystalline silicon (µc-Si:H) films deposited by plasma-enhanced (PE)CVD on hydrogenated amorphous silicon (a-Si:H) substrates is investigated through structural and electrical characterization, with special attention paid to the initial growth stage of µc-Si:H films. It is found that the nucleation rate of µc-Si is dependent on the thickness of the a-Si:H substrate. The µc-Si:H film exhibits a rapid nucleation on a thin a-Si:H layer, leaving a thin incubation layer at the µc-Si/substrate interface. This substrate-thickness dependence of the nucleation rate is proposed to be correlated with the stress inside the a-Si:H layer. The high interfacial stress existing in the thin a-Si:H layer facilitates the formation of high concentration, strained Si-Si bonds, which are responsible for the rapid µc-Si nucleation. The thick a-Si:H layer relaxes the interfacial stress through the formation of islands in the Stranski-Krastanow (S-K) growth mode, while the intrinsic stress is still low, resulting in a long nucleation process allowing for the intrinsic compressive stress to be accumulated that is necessary for the µc-Si deposited on it.
期刊介绍:
Chemical Vapor Deposition (CVD) publishes Reviews, Short Communications, and Full Papers on all aspects of chemical vapor deposition and related technologies, along with other articles presenting opinion, news, conference information, and book reviews. All papers are peer-reviewed. The journal provides a unified forum for chemists, physicists, and engineers whose publications on chemical vapor deposition have in the past been spread over journals covering inorganic chemistry, materials chemistry, organometallics, applied physics and semiconductor technology, thin films, and ceramic processing.