{"title":"具有真实颗粒形状、结构和接触力学的“虚拟”铁路道砟的DEM研究","authors":"Mathias Tolomeo, Glenn R. McDowell","doi":"10.1007/s10035-023-01322-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we show DEM simulations of static and cyclic large triaxial tests on a sample of railway ballast. The sample is reconstructed from X-Ray tomography images of an untested laboratory sample, recovered by impregnation with an epoxy resin. Measurements of both shape and fabric are carried out; the sample shows a high anisotropy of particle orientations due to the preparation procedure and a high shape heterogeneity. A DEM model is then generated using clumps to model single particles, preserving the shape of each particle and the fabric of the sample. Results of static and cyclic simulations are shown and compared with previous simulations on numerically generated samples, showing the importance of an accurate representation of the whole range of particle shapes, as well as confirming the effect of particle anisotropy on the mechanical response.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"25 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10035-023-01322-1.pdf","citationCount":"2","resultStr":"{\"title\":\"DEM study of an “avatar” railway ballast with real particle shape, fabric and contact mechanics\",\"authors\":\"Mathias Tolomeo, Glenn R. McDowell\",\"doi\":\"10.1007/s10035-023-01322-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we show DEM simulations of static and cyclic large triaxial tests on a sample of railway ballast. The sample is reconstructed from X-Ray tomography images of an untested laboratory sample, recovered by impregnation with an epoxy resin. Measurements of both shape and fabric are carried out; the sample shows a high anisotropy of particle orientations due to the preparation procedure and a high shape heterogeneity. A DEM model is then generated using clumps to model single particles, preserving the shape of each particle and the fabric of the sample. Results of static and cyclic simulations are shown and compared with previous simulations on numerically generated samples, showing the importance of an accurate representation of the whole range of particle shapes, as well as confirming the effect of particle anisotropy on the mechanical response.</p><h3>Graphical Abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":582,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"25 2\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10035-023-01322-1.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-023-01322-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-023-01322-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
DEM study of an “avatar” railway ballast with real particle shape, fabric and contact mechanics
In this paper we show DEM simulations of static and cyclic large triaxial tests on a sample of railway ballast. The sample is reconstructed from X-Ray tomography images of an untested laboratory sample, recovered by impregnation with an epoxy resin. Measurements of both shape and fabric are carried out; the sample shows a high anisotropy of particle orientations due to the preparation procedure and a high shape heterogeneity. A DEM model is then generated using clumps to model single particles, preserving the shape of each particle and the fabric of the sample. Results of static and cyclic simulations are shown and compared with previous simulations on numerically generated samples, showing the importance of an accurate representation of the whole range of particle shapes, as well as confirming the effect of particle anisotropy on the mechanical response.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.