不同初始角速度和颗粒大小的落石冲击碎石垫层的数值模拟

IF 2.4 3区 工程技术
Shaozhen Duan, Haipeng Yu, Biao Xu
{"title":"不同初始角速度和颗粒大小的落石冲击碎石垫层的数值模拟","authors":"Shaozhen Duan,&nbsp;Haipeng Yu,&nbsp;Biao Xu","doi":"10.1007/s10035-023-01320-3","DOIUrl":null,"url":null,"abstract":"<div><p>Gravel cushions are widely laid on the top of structures or rock sheds to absorb the impact energy of rockfalls in mountainous districts. Based on the discrete element method, a numerical model of a rockfall impacting a 2D mixed-size gravel cushion layer at an initial angular velocity was established in this study. The penetration depth of the rockfall, impact force of the cushion surface, and energy dissipation ratio were investigated. Increasing the initial angular velocity and decreasing the particle size of the cushion were found to evidently reduce the maximum penetration depth of the rockfall and increase the impact force of the cushion surface, respectively. The energy dissipation ratio after collision was affected by the particle size of the cushion and the ratio of the angular kinetic energy. Omitting the initial angular velocity led to an underestimation of the energy dissipation ratio, by up to 40.8%. With decreasing particle size of the cushion, the energy dissipation ratio first increased but then decreased. The study results provide a theoretical basis for the design of gravel cushions intended for rockfall protection.</p></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"25 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical simulation of a rockfall impacting a gravel cushion with varying initial angular velocity and particle sizes\",\"authors\":\"Shaozhen Duan,&nbsp;Haipeng Yu,&nbsp;Biao Xu\",\"doi\":\"10.1007/s10035-023-01320-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gravel cushions are widely laid on the top of structures or rock sheds to absorb the impact energy of rockfalls in mountainous districts. Based on the discrete element method, a numerical model of a rockfall impacting a 2D mixed-size gravel cushion layer at an initial angular velocity was established in this study. The penetration depth of the rockfall, impact force of the cushion surface, and energy dissipation ratio were investigated. Increasing the initial angular velocity and decreasing the particle size of the cushion were found to evidently reduce the maximum penetration depth of the rockfall and increase the impact force of the cushion surface, respectively. The energy dissipation ratio after collision was affected by the particle size of the cushion and the ratio of the angular kinetic energy. Omitting the initial angular velocity led to an underestimation of the energy dissipation ratio, by up to 40.8%. With decreasing particle size of the cushion, the energy dissipation ratio first increased but then decreased. The study results provide a theoretical basis for the design of gravel cushions intended for rockfall protection.</p></div>\",\"PeriodicalId\":49323,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"25 2\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-023-01320-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-023-01320-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

山区普遍在建筑物或石棚顶部铺设砾石垫层,以吸收岩崩的冲击能。基于离散元法,建立了岩崩在初始角速度下冲击二维混合粒径砾石垫层的数值模型。研究了岩崩的侵彻深度、垫层表面的冲击力和能量耗散比。增大初始角速度和减小垫层粒径可明显减小岩崩的最大侵彻深度,增大垫层表面的冲击力。碰撞后的能量耗散比受缓冲层颗粒大小和角动能比的影响。忽略初始角速度导致能量耗散比的低估高达40.8%。随着垫层粒径的减小,能量耗散比先增大后减小。研究结果可为石质防落石垫层的设计提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Numerical simulation of a rockfall impacting a gravel cushion with varying initial angular velocity and particle sizes

Numerical simulation of a rockfall impacting a gravel cushion with varying initial angular velocity and particle sizes

Gravel cushions are widely laid on the top of structures or rock sheds to absorb the impact energy of rockfalls in mountainous districts. Based on the discrete element method, a numerical model of a rockfall impacting a 2D mixed-size gravel cushion layer at an initial angular velocity was established in this study. The penetration depth of the rockfall, impact force of the cushion surface, and energy dissipation ratio were investigated. Increasing the initial angular velocity and decreasing the particle size of the cushion were found to evidently reduce the maximum penetration depth of the rockfall and increase the impact force of the cushion surface, respectively. The energy dissipation ratio after collision was affected by the particle size of the cushion and the ratio of the angular kinetic energy. Omitting the initial angular velocity led to an underestimation of the energy dissipation ratio, by up to 40.8%. With decreasing particle size of the cushion, the energy dissipation ratio first increased but then decreased. The study results provide a theoretical basis for the design of gravel cushions intended for rockfall protection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信