加热和冷却对Ti-22Nb-6Zr合金等温β→ω转变的影响

IF 0.6 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING
S. M. Dubinskiy, A. P. Baranova, V. Brailovski
{"title":"加热和冷却对Ti-22Nb-6Zr合金等温β→ω转变的影响","authors":"S. M. Dubinskiy,&nbsp;A. P. Baranova,&nbsp;V. Brailovski","doi":"10.3103/S1067821222060050","DOIUrl":null,"url":null,"abstract":"<p>The influence of heating and cooling routes prior to aging of the Ti–22Nb–6Zr shape memory alloy (at %) on the intensity of formation of the isothermal ω<sub>iso</sub> phase in the temperature range from 250 to 350°C for 1 and 3 h is studied by X-ray diffraction. It is shown that, for intense formation of the ω<sub>iso</sub> phase, the most efficient scheme for entering the aging interval includes rapid water cooling water to room temperature from an annealing temperature of 600°C and subsequent rapid heating to an aging temperature of 300°C. All other routes used for entering in the aging interval, including slow cooling and/or heating, do not lead to the formation of an X-ray identifiable amount of the ω<sub>iso</sub> phase, whereas, the β → ω<sub>iso</sub> transformation in the temperature range from 250 to 350°C has a pronounced C-shaped kinetics with a maximum at 300°C. Aging in the entire range of 250–350°C leads to the dispersion hardening and an increase in the hardness of the alloy compared to the initial state. Moreover, the hardness gradually increases with an increase in the aging temperature from 250 to 300°C and remains constant in the temperature range of 300–350°C. The β-phase lattice parameter of Ti–22Nb–6Zr alloy remains unchanged over the entire aging temperature range of 250–350°C, which indicates the absence of noticeable diffusional redistribution of elements in the solid solution during the formation of the ω<sub>iso</sub> phase. The w<sub>iso</sub> phase formed during the aging of the Ti–22Nb–6Zr alloy over the entire temperature range of 250–350°C has the ratio <i>c</i><sub>ω</sub>/<i>a</i><sub>ω</sub> = 0.613 ± 0.002, which is similar to the ratio <i>c</i><sub>ω</sub>/<i>a</i><sub>ω</sub> for the shear-type athermal ω<sub>ath</sub> phase, which in turn further emphasizes the identity of these two phase varieties.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Heating and Cooling on the Isothermal β → ω Transition in Ti–22Nb–6Zr Alloy\",\"authors\":\"S. M. Dubinskiy,&nbsp;A. P. Baranova,&nbsp;V. Brailovski\",\"doi\":\"10.3103/S1067821222060050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The influence of heating and cooling routes prior to aging of the Ti–22Nb–6Zr shape memory alloy (at %) on the intensity of formation of the isothermal ω<sub>iso</sub> phase in the temperature range from 250 to 350°C for 1 and 3 h is studied by X-ray diffraction. It is shown that, for intense formation of the ω<sub>iso</sub> phase, the most efficient scheme for entering the aging interval includes rapid water cooling water to room temperature from an annealing temperature of 600°C and subsequent rapid heating to an aging temperature of 300°C. All other routes used for entering in the aging interval, including slow cooling and/or heating, do not lead to the formation of an X-ray identifiable amount of the ω<sub>iso</sub> phase, whereas, the β → ω<sub>iso</sub> transformation in the temperature range from 250 to 350°C has a pronounced C-shaped kinetics with a maximum at 300°C. Aging in the entire range of 250–350°C leads to the dispersion hardening and an increase in the hardness of the alloy compared to the initial state. Moreover, the hardness gradually increases with an increase in the aging temperature from 250 to 300°C and remains constant in the temperature range of 300–350°C. The β-phase lattice parameter of Ti–22Nb–6Zr alloy remains unchanged over the entire aging temperature range of 250–350°C, which indicates the absence of noticeable diffusional redistribution of elements in the solid solution during the formation of the ω<sub>iso</sub> phase. The w<sub>iso</sub> phase formed during the aging of the Ti–22Nb–6Zr alloy over the entire temperature range of 250–350°C has the ratio <i>c</i><sub>ω</sub>/<i>a</i><sub>ω</sub> = 0.613 ± 0.002, which is similar to the ratio <i>c</i><sub>ω</sub>/<i>a</i><sub>ω</sub> for the shear-type athermal ω<sub>ath</sub> phase, which in turn further emphasizes the identity of these two phase varieties.</p>\",\"PeriodicalId\":765,\"journal\":{\"name\":\"Russian Journal of Non-Ferrous Metals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Non-Ferrous Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1067821222060050\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1067821222060050","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

通过x射线衍射研究了Ti-22Nb-6Zr形状记忆合金(at %)时效前加热和冷却方式对等温ω相形成强度的影响,时效范围为250 ~ 350℃,时效时间为1和3 h。结果表明,对于ωiso相的强烈形成,进入时效区间的最有效方案是将600℃的退火温度快速水冷却至室温,然后快速加热至300℃的时效温度。所有其他进入时效区间的途径,包括缓慢冷却和/或加热,都不会导致x射线可识别的ωiso相的形成,而β→ωiso相变在250 ~ 350℃温度范围内具有明显的C型动力学,在300℃时达到最大值。在250-350°C的整个时效范围内,合金的弥散硬化和硬度比初始状态有所增加。随着时效温度的升高,硬度逐渐增大,在300 ~ 350℃范围内保持不变。在250 ~ 350℃时效过程中,Ti-22Nb-6Zr合金的β相晶格参数基本保持不变,表明在ωiso相形成过程中固溶体中元素没有明显的扩散再分布。Ti-22Nb-6Zr合金在250 ~ 350℃整个温度范围内时效过程中形成的wiso相的比值为C ω/aω = 0.613±0.002,与剪切型非热ω相的比值相似,进一步强调了这两种相的同一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Influence of Heating and Cooling on the Isothermal β → ω Transition in Ti–22Nb–6Zr Alloy

Influence of Heating and Cooling on the Isothermal β → ω Transition in Ti–22Nb–6Zr Alloy

The influence of heating and cooling routes prior to aging of the Ti–22Nb–6Zr shape memory alloy (at %) on the intensity of formation of the isothermal ωiso phase in the temperature range from 250 to 350°C for 1 and 3 h is studied by X-ray diffraction. It is shown that, for intense formation of the ωiso phase, the most efficient scheme for entering the aging interval includes rapid water cooling water to room temperature from an annealing temperature of 600°C and subsequent rapid heating to an aging temperature of 300°C. All other routes used for entering in the aging interval, including slow cooling and/or heating, do not lead to the formation of an X-ray identifiable amount of the ωiso phase, whereas, the β → ωiso transformation in the temperature range from 250 to 350°C has a pronounced C-shaped kinetics with a maximum at 300°C. Aging in the entire range of 250–350°C leads to the dispersion hardening and an increase in the hardness of the alloy compared to the initial state. Moreover, the hardness gradually increases with an increase in the aging temperature from 250 to 300°C and remains constant in the temperature range of 300–350°C. The β-phase lattice parameter of Ti–22Nb–6Zr alloy remains unchanged over the entire aging temperature range of 250–350°C, which indicates the absence of noticeable diffusional redistribution of elements in the solid solution during the formation of the ωiso phase. The wiso phase formed during the aging of the Ti–22Nb–6Zr alloy over the entire temperature range of 250–350°C has the ratio cω/aω = 0.613 ± 0.002, which is similar to the ratio cω/aω for the shear-type athermal ωath phase, which in turn further emphasizes the identity of these two phase varieties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Non-Ferrous Metals
Russian Journal of Non-Ferrous Metals METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.90
自引率
12.50%
发文量
59
审稿时长
3 months
期刊介绍: Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信