{"title":"人脸识别与人脸图像集拓扑","authors":"Bichsel M., Pentland A.P.","doi":"10.1006/ciun.1994.1017","DOIUrl":null,"url":null,"abstract":"<div><p>If we consider an <em>n</em> × <em>n</em> image as an <em>n</em><sup>2</sup>-dimensional vector, then images of faces can be considered as points in this <em>n</em><sup>2</sup>-dimensional image space. Our previous studies of physical transformations of the face, including translation, small rotations, and illumination changes, showed that the set of face images consists of relatively simple connected subregions in image space. Consequently linear matching techniques can be used to obtain reliable face recognition. However, for more general transformations, such as large rotations or scale changes, the face subregions become highly non-convex. We have therefore developed a scale-space matching technique that allows us to take advantage of knowledge about important geometrical transformations and about the topology of the face subregion in image space. While recognition of faces is the focus of this paper, the algorithm is sufficiently general to be applicable to a large variety of object recognition tasks</p></div>","PeriodicalId":100350,"journal":{"name":"CVGIP: Image Understanding","volume":"59 2","pages":"Pages 254-261"},"PeriodicalIF":0.0000,"publicationDate":"1994-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/ciun.1994.1017","citationCount":"135","resultStr":"{\"title\":\"Human Face Recognition and the Face Image Set′s Topology\",\"authors\":\"Bichsel M., Pentland A.P.\",\"doi\":\"10.1006/ciun.1994.1017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>If we consider an <em>n</em> × <em>n</em> image as an <em>n</em><sup>2</sup>-dimensional vector, then images of faces can be considered as points in this <em>n</em><sup>2</sup>-dimensional image space. Our previous studies of physical transformations of the face, including translation, small rotations, and illumination changes, showed that the set of face images consists of relatively simple connected subregions in image space. Consequently linear matching techniques can be used to obtain reliable face recognition. However, for more general transformations, such as large rotations or scale changes, the face subregions become highly non-convex. We have therefore developed a scale-space matching technique that allows us to take advantage of knowledge about important geometrical transformations and about the topology of the face subregion in image space. While recognition of faces is the focus of this paper, the algorithm is sufficiently general to be applicable to a large variety of object recognition tasks</p></div>\",\"PeriodicalId\":100350,\"journal\":{\"name\":\"CVGIP: Image Understanding\",\"volume\":\"59 2\",\"pages\":\"Pages 254-261\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/ciun.1994.1017\",\"citationCount\":\"135\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CVGIP: Image Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1049966084710175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVGIP: Image Understanding","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1049966084710175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Human Face Recognition and the Face Image Set′s Topology
If we consider an n × n image as an n2-dimensional vector, then images of faces can be considered as points in this n2-dimensional image space. Our previous studies of physical transformations of the face, including translation, small rotations, and illumination changes, showed that the set of face images consists of relatively simple connected subregions in image space. Consequently linear matching techniques can be used to obtain reliable face recognition. However, for more general transformations, such as large rotations or scale changes, the face subregions become highly non-convex. We have therefore developed a scale-space matching technique that allows us to take advantage of knowledge about important geometrical transformations and about the topology of the face subregion in image space. While recognition of faces is the focus of this paper, the algorithm is sufficiently general to be applicable to a large variety of object recognition tasks