圆锥曲线和正交的三维解释

Kanatani K., Liu W.
{"title":"圆锥曲线和正交的三维解释","authors":"Kanatani K.,&nbsp;Liu W.","doi":"10.1006/ciun.1993.1043","DOIUrl":null,"url":null,"abstract":"<div><p>Computational techniques involving conics are formulated in the framework of projective geometry, and basic notions of projective geometry such as poles, polars, and conjugate pairs are reformulated as \"computational procedures\" with special emphasis on computational aspects. It is shown that the 3D geometry of three orthogonal lines can be interpreted by computing conics. We then describe an analytical procedure for computing the 3D geometry of a conic of a known shape from its projection. Real image examples are also given.</p></div>","PeriodicalId":100350,"journal":{"name":"CVGIP: Image Understanding","volume":"58 3","pages":"Pages 286-301"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/ciun.1993.1043","citationCount":"77","resultStr":"{\"title\":\"3D Interpretation of Conics and Orthogonality\",\"authors\":\"Kanatani K.,&nbsp;Liu W.\",\"doi\":\"10.1006/ciun.1993.1043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Computational techniques involving conics are formulated in the framework of projective geometry, and basic notions of projective geometry such as poles, polars, and conjugate pairs are reformulated as \\\"computational procedures\\\" with special emphasis on computational aspects. It is shown that the 3D geometry of three orthogonal lines can be interpreted by computing conics. We then describe an analytical procedure for computing the 3D geometry of a conic of a known shape from its projection. Real image examples are also given.</p></div>\",\"PeriodicalId\":100350,\"journal\":{\"name\":\"CVGIP: Image Understanding\",\"volume\":\"58 3\",\"pages\":\"Pages 286-301\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/ciun.1993.1043\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CVGIP: Image Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1049966083710430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVGIP: Image Understanding","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1049966083710430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

摘要

涉及二次曲线的计算技术在射影几何的框架中被公式化,射影几何的基本概念,如极点、极点和共轭对被重新公式化为“计算过程”,特别强调计算方面。证明了三条正交直线的三维几何可以用计算二次曲线来解释。然后,我们描述了从已知形状的圆锥曲线的投影计算其三维几何形状的解析过程。并给出了实像实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D Interpretation of Conics and Orthogonality

Computational techniques involving conics are formulated in the framework of projective geometry, and basic notions of projective geometry such as poles, polars, and conjugate pairs are reformulated as "computational procedures" with special emphasis on computational aspects. It is shown that the 3D geometry of three orthogonal lines can be interpreted by computing conics. We then describe an analytical procedure for computing the 3D geometry of a conic of a known shape from its projection. Real image examples are also given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信