数字滤波传播优化阻抗细胞术信号质量和计数精度

IF 3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Brandon K. Ashley, Umer Hassan
{"title":"数字滤波传播优化阻抗细胞术信号质量和计数精度","authors":"Brandon K. Ashley,&nbsp;Umer Hassan","doi":"10.1007/s10544-022-00636-w","DOIUrl":null,"url":null,"abstract":"<div><p>Improving biosensor performance which utilize impedance cytometry is a highly interested research topic for many clinical and diagnostic settings. During development, a sensor’s design and external factors are rigorously optimized, but improvements in signal quality and interpretation are usually still necessary to produce a sensitive and accurate product. A common solution involves digital signal processing after sample analysis, but these methods frequently fall short in providing meaningful signal outcome changes. This shortcoming may arise from a lack of investigative research into selecting and using signal processing functions, as many choices in current sensors are based on either theoretical results or estimated hypotheses. While a ubiquitous condition set is improbable across diverse impedance cytometry designs, there lies a need for a streamlined and rapid analytical method for discovering those conditions for unique sensors. Herein, we present a comprehensive dissemination of digital filtering parameters applied on experimental impedance cytometry data for determining the limits of signal processing on signal quality improvements. Various filter orders, cutoff frequencies, and filter types are applied after data collection for highest achievable noise reduction. After designing and fabricating a microfluidic impedance cytometer, 9 µm polystyrene particles were measured under flow and signal quality improved by 6.09 dB when implementing digital filtering. This approached was then translated to isolated human neutrophils, where similarly, signal quality improved by 7.50 dB compared to its unfiltered original data. By sweeping all filtering conditions and devising a system to evaluate filtering performance both by signal quality and object counting accuracy, this may serve as a framework for future systems to determine their appropriately optimized filtering configuration.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"24 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-022-00636-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Digital filtering dissemination for optimizing impedance cytometry signal quality and counting accuracy\",\"authors\":\"Brandon K. Ashley,&nbsp;Umer Hassan\",\"doi\":\"10.1007/s10544-022-00636-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Improving biosensor performance which utilize impedance cytometry is a highly interested research topic for many clinical and diagnostic settings. During development, a sensor’s design and external factors are rigorously optimized, but improvements in signal quality and interpretation are usually still necessary to produce a sensitive and accurate product. A common solution involves digital signal processing after sample analysis, but these methods frequently fall short in providing meaningful signal outcome changes. This shortcoming may arise from a lack of investigative research into selecting and using signal processing functions, as many choices in current sensors are based on either theoretical results or estimated hypotheses. While a ubiquitous condition set is improbable across diverse impedance cytometry designs, there lies a need for a streamlined and rapid analytical method for discovering those conditions for unique sensors. Herein, we present a comprehensive dissemination of digital filtering parameters applied on experimental impedance cytometry data for determining the limits of signal processing on signal quality improvements. Various filter orders, cutoff frequencies, and filter types are applied after data collection for highest achievable noise reduction. After designing and fabricating a microfluidic impedance cytometer, 9 µm polystyrene particles were measured under flow and signal quality improved by 6.09 dB when implementing digital filtering. This approached was then translated to isolated human neutrophils, where similarly, signal quality improved by 7.50 dB compared to its unfiltered original data. By sweeping all filtering conditions and devising a system to evaluate filtering performance both by signal quality and object counting accuracy, this may serve as a framework for future systems to determine their appropriately optimized filtering configuration.</p></div>\",\"PeriodicalId\":490,\"journal\":{\"name\":\"Biomedical Microdevices\",\"volume\":\"24 4\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10544-022-00636-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Microdevices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10544-022-00636-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-022-00636-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用阻抗细胞术提高生物传感器的性能是许多临床和诊断设置的一个高度感兴趣的研究课题。在开发过程中,传感器的设计和外部因素被严格优化,但信号质量和解释的改进通常仍然需要产生敏感和准确的产品。一种常见的解决方案是在样本分析后进行数字信号处理,但这些方法往往无法提供有意义的信号结果变化。这一缺点可能是由于缺乏对选择和使用信号处理函数的调查研究,因为当前传感器的许多选择要么基于理论结果,要么基于估计的假设。虽然在不同的阻抗细胞术设计中不可能存在普遍存在的条件集,但需要一种简化和快速的分析方法来发现独特传感器的这些条件。在此,我们提出了应用于实验阻抗细胞术数据的数字滤波参数的全面传播,以确定信号处理对信号质量改善的限制。各种滤波器的顺序,截止频率和滤波器类型应用后的数据收集最高可实现的降噪。设计制作了微流控阻抗细胞仪,对9µm聚苯乙烯颗粒进行了流量测量,经过数字滤波后信号质量提高了6.09 dB。然后将这种方法转化为分离的人类中性粒细胞,与未过滤的原始数据相比,信号质量同样提高了7.50 dB。通过扫描所有滤波条件并设计一个系统来评估信号质量和目标计数精度的滤波性能,这可以作为未来系统确定其适当优化滤波配置的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Digital filtering dissemination for optimizing impedance cytometry signal quality and counting accuracy

Digital filtering dissemination for optimizing impedance cytometry signal quality and counting accuracy

Improving biosensor performance which utilize impedance cytometry is a highly interested research topic for many clinical and diagnostic settings. During development, a sensor’s design and external factors are rigorously optimized, but improvements in signal quality and interpretation are usually still necessary to produce a sensitive and accurate product. A common solution involves digital signal processing after sample analysis, but these methods frequently fall short in providing meaningful signal outcome changes. This shortcoming may arise from a lack of investigative research into selecting and using signal processing functions, as many choices in current sensors are based on either theoretical results or estimated hypotheses. While a ubiquitous condition set is improbable across diverse impedance cytometry designs, there lies a need for a streamlined and rapid analytical method for discovering those conditions for unique sensors. Herein, we present a comprehensive dissemination of digital filtering parameters applied on experimental impedance cytometry data for determining the limits of signal processing on signal quality improvements. Various filter orders, cutoff frequencies, and filter types are applied after data collection for highest achievable noise reduction. After designing and fabricating a microfluidic impedance cytometer, 9 µm polystyrene particles were measured under flow and signal quality improved by 6.09 dB when implementing digital filtering. This approached was then translated to isolated human neutrophils, where similarly, signal quality improved by 7.50 dB compared to its unfiltered original data. By sweeping all filtering conditions and devising a system to evaluate filtering performance both by signal quality and object counting accuracy, this may serve as a framework for future systems to determine their appropriately optimized filtering configuration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信