基于FDEM的多孔多晶冰断裂破坏特征

IF 2.3 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yu Wang, Jinbo Tang, Shuaixing Yan
{"title":"基于FDEM的多孔多晶冰断裂破坏特征","authors":"Yu Wang,&nbsp;Jinbo Tang,&nbsp;Shuaixing Yan","doi":"10.1007/s10035-023-01350-x","DOIUrl":null,"url":null,"abstract":"<div><p>The finite-discrete element method (FDEM) can be used to simulate brittle materials such as polycrystalline ice with specific geometric information. However, most previous studies treat ice as intact and nonporous, ignoring the effect of internal porosity. In this study, an FDEM model of polycrystalline ice with specific porosity is built by using the cohesive interface element and the method of randomly deleting elements. Comparison with experimental results confirms that the model can capture the strength properties and deformation patterns of polycrystalline ice. The fracture failure patterns and mechanical responses of ice specimens and their relationships with porosity are investigated by uniaxial compression tests and Brazilian splitting tests. The results show that with increasing porosity, the fracture failure patterns of the specimens in the uniaxial compression test evolve into three types: global shear failure, local shear failure and local tensile‒shear failure. There is no obvious difference in the failure patterns of the specimens in the Brazilian splitting test. In addition, as the porosity increases, the material exhibits a transition from brittleness to ductility, and the porosity also affects the local fragmentation characteristics inside the polycrystalline ice, significantly weakening the strength of the specimens.</p><h3>Graphic Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"25 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fracture failure characteristics of porous polycrystalline ice based on the FDEM\",\"authors\":\"Yu Wang,&nbsp;Jinbo Tang,&nbsp;Shuaixing Yan\",\"doi\":\"10.1007/s10035-023-01350-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The finite-discrete element method (FDEM) can be used to simulate brittle materials such as polycrystalline ice with specific geometric information. However, most previous studies treat ice as intact and nonporous, ignoring the effect of internal porosity. In this study, an FDEM model of polycrystalline ice with specific porosity is built by using the cohesive interface element and the method of randomly deleting elements. Comparison with experimental results confirms that the model can capture the strength properties and deformation patterns of polycrystalline ice. The fracture failure patterns and mechanical responses of ice specimens and their relationships with porosity are investigated by uniaxial compression tests and Brazilian splitting tests. The results show that with increasing porosity, the fracture failure patterns of the specimens in the uniaxial compression test evolve into three types: global shear failure, local shear failure and local tensile‒shear failure. There is no obvious difference in the failure patterns of the specimens in the Brazilian splitting test. In addition, as the porosity increases, the material exhibits a transition from brittleness to ductility, and the porosity also affects the local fragmentation characteristics inside the polycrystalline ice, significantly weakening the strength of the specimens.</p><h3>Graphic Abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":582,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"25 3\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-023-01350-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-023-01350-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有限离散元法(FDEM)可以用来模拟具有特定几何信息的脆性材料,如多晶冰。然而,以往的研究大多将冰视为完整的无孔冰,忽略了内部孔隙率的影响。本文采用内聚界面单元和随机删除单元的方法,建立了具有特定孔隙率的多晶冰的FDEM模型。与实验结果对比表明,该模型能较好地反映多晶冰的强度特性和变形规律。通过单轴压缩试验和巴西劈裂试验,研究了冰试件的断裂破坏模式、力学响应及其与孔隙度的关系。结果表明:随着孔隙率的增加,单轴压缩试验中试件的断裂破坏模式演变为整体剪切破坏、局部剪切破坏和局部拉剪破坏三种破坏模式;在巴西劈裂试验中,试件的破坏形态无明显差异。此外,随着孔隙率的增大,材料呈现由脆性向延性的转变,孔隙率还会影响多晶冰内部的局部破碎特征,显著削弱试样的强度。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fracture failure characteristics of porous polycrystalline ice based on the FDEM

Fracture failure characteristics of porous polycrystalline ice based on the FDEM

The finite-discrete element method (FDEM) can be used to simulate brittle materials such as polycrystalline ice with specific geometric information. However, most previous studies treat ice as intact and nonporous, ignoring the effect of internal porosity. In this study, an FDEM model of polycrystalline ice with specific porosity is built by using the cohesive interface element and the method of randomly deleting elements. Comparison with experimental results confirms that the model can capture the strength properties and deformation patterns of polycrystalline ice. The fracture failure patterns and mechanical responses of ice specimens and their relationships with porosity are investigated by uniaxial compression tests and Brazilian splitting tests. The results show that with increasing porosity, the fracture failure patterns of the specimens in the uniaxial compression test evolve into three types: global shear failure, local shear failure and local tensile‒shear failure. There is no obvious difference in the failure patterns of the specimens in the Brazilian splitting test. In addition, as the porosity increases, the material exhibits a transition from brittleness to ductility, and the porosity also affects the local fragmentation characteristics inside the polycrystalline ice, significantly weakening the strength of the specimens.

Graphic Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Granular Matter
Granular Matter Materials Science-General Materials Science
CiteScore
4.60
自引率
8.30%
发文量
95
审稿时长
6 months
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信