大色数有向图中具有同余约束的细分

IF 0.9 3区 数学 Q2 MATHEMATICS
Raphael Steiner
{"title":"大色数有向图中具有同余约束的细分","authors":"Raphael Steiner","doi":"10.1002/jgt.23020","DOIUrl":null,"url":null,"abstract":"<p>We prove that for every digraph <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math> and every assignment of pairs of integers <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mi>e</mi>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>q</mi>\n \n <mi>e</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>e</mi>\n \n <mo>∈</mo>\n \n <mi>A</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${({r}_{e},{q}_{e})}_{e\\in A(F)}$</annotation>\n </semantics></math> to its arcs there exists an integer <math>\n <semantics>\n <mrow>\n <mi>N</mi>\n </mrow>\n <annotation> $N$</annotation>\n </semantics></math> such that every digraph <math>\n <semantics>\n <mrow>\n <mi>D</mi>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> with dichromatic number greater than <math>\n <semantics>\n <mrow>\n <mi>N</mi>\n </mrow>\n <annotation> $N$</annotation>\n </semantics></math> contains a subdivision of <math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math> in which <math>\n <semantics>\n <mrow>\n <mi>e</mi>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math> is subdivided into a directed path of length congruent to <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mi>e</mi>\n </msub>\n </mrow>\n <annotation> ${r}_{e}$</annotation>\n </semantics></math> modulo <math>\n <semantics>\n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>e</mi>\n </msub>\n </mrow>\n <annotation> ${q}_{e}$</annotation>\n </semantics></math>, for every <math>\n <semantics>\n <mrow>\n <mi>e</mi>\n \n <mo>∈</mo>\n \n <mi>A</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $e\\in A(F)$</annotation>\n </semantics></math>. This generalizes to the directed setting the analogous result by Thomassen for undirected graphs, and at the same time yields a novel short proof of his result.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"105 1","pages":"136-143"},"PeriodicalIF":0.9000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23020","citationCount":"3","resultStr":"{\"title\":\"Subdivisions with congruence constraints in digraphs of large chromatic number\",\"authors\":\"Raphael Steiner\",\"doi\":\"10.1002/jgt.23020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that for every digraph <math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n <annotation> $F$</annotation>\\n </semantics></math> and every assignment of pairs of integers <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mi>e</mi>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>q</mi>\\n \\n <mi>e</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mi>e</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>A</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>F</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> ${({r}_{e},{q}_{e})}_{e\\\\in A(F)}$</annotation>\\n </semantics></math> to its arcs there exists an integer <math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n <annotation> $N$</annotation>\\n </semantics></math> such that every digraph <math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n <annotation> $D$</annotation>\\n </semantics></math> with dichromatic number greater than <math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n <annotation> $N$</annotation>\\n </semantics></math> contains a subdivision of <math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <annotation> $F$</annotation>\\n </semantics></math> in which <math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n </mrow>\\n <annotation> $e$</annotation>\\n </semantics></math> is subdivided into a directed path of length congruent to <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mi>e</mi>\\n </msub>\\n </mrow>\\n <annotation> ${r}_{e}$</annotation>\\n </semantics></math> modulo <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>q</mi>\\n \\n <mi>e</mi>\\n </msub>\\n </mrow>\\n <annotation> ${q}_{e}$</annotation>\\n </semantics></math>, for every <math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>A</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>F</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $e\\\\in A(F)$</annotation>\\n </semantics></math>. This generalizes to the directed setting the analogous result by Thomassen for undirected graphs, and at the same time yields a novel short proof of his result.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"105 1\",\"pages\":\"136-143\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23020\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23020\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23020","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们证明了对于每一个有向图F$ F$和每一对整数(re ,q e) e∈A(F) ${({r}_{e},{q}_{e})}_{e\在A(F)}$到它的弧中存在一个整数N$ N$使得每个有向图二色数大于N的D$ D$包含F$ F$的细分,其中e$ e$被细分变成长度等于r的有向路径e ${r}_{e}$模q e ${q}_{e}$,对于每个e∈A(F)$ e\in A(F)$。将Thomassen关于无向图的类似结果推广到有向集,同时给出了对其结果的一个新颖的简短证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Subdivisions with congruence constraints in digraphs of large chromatic number

Subdivisions with congruence constraints in digraphs of large chromatic number

We prove that for every digraph F $F$ and every assignment of pairs of integers ( r e , q e ) e A ( F ) ${({r}_{e},{q}_{e})}_{e\in A(F)}$ to its arcs there exists an integer N $N$ such that every digraph D $D$ with dichromatic number greater than N $N$ contains a subdivision of F $F$ in which e $e$ is subdivided into a directed path of length congruent to r e ${r}_{e}$ modulo q e ${q}_{e}$ , for every e A ( F ) $e\in A(F)$ . This generalizes to the directed setting the analogous result by Thomassen for undirected graphs, and at the same time yields a novel short proof of his result.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信