Wiebke Rösing, Toni Schildhauer, Jörg König, Christian Cierpka
{"title":"利用迪安涡流对微流体燃料电池浓度边界层进行被动控制","authors":"Wiebke Rösing, Toni Schildhauer, Jörg König, Christian Cierpka","doi":"10.1007/s10404-019-2274-2","DOIUrl":null,"url":null,"abstract":"<p>Microfluidic fuel cells are limited by the formation of concentration boundary layers at the electrodes, resulting in low power density and low fuel utilization. This work demonstrates a novel method to enhance the diffusion-limited mass transport by decreasing the size of the concentration boundary layer using Dean vortices. These vortices are induced by a curved microchannel and enhance the mass transport of fresh reactant towards the electrodes. Numerical simulations were performed to show the influence of the Dean vortices on the performance of a microfluidic fuel cell. Furthermore, a curved microfluidic device with segmented electrodes was fabricated, which allows to experimentally investigate the effect of the enhanced diffusion-limited mass transport on the current density of a model redox couple and thus to prove the concept and the numerical results. It is shown that the Dean vortices, evolving in the curved channel, cause a convective transport of fresh solution towards the electrodes yielding a high current density and resulting in an improvement of 30% using a curved microfluidic fuel cell instead of a straight one. On condition that diffusive and convective mass transport are well-balanced, this approach promises not only a higher power density, but also a much higher fuel utilization.</p>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"23 9","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2019-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10404-019-2274-2","citationCount":"14","resultStr":"{\"title\":\"Passive control of the concentration boundary layer in microfluidic fuel cells using Dean vortices\",\"authors\":\"Wiebke Rösing, Toni Schildhauer, Jörg König, Christian Cierpka\",\"doi\":\"10.1007/s10404-019-2274-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microfluidic fuel cells are limited by the formation of concentration boundary layers at the electrodes, resulting in low power density and low fuel utilization. This work demonstrates a novel method to enhance the diffusion-limited mass transport by decreasing the size of the concentration boundary layer using Dean vortices. These vortices are induced by a curved microchannel and enhance the mass transport of fresh reactant towards the electrodes. Numerical simulations were performed to show the influence of the Dean vortices on the performance of a microfluidic fuel cell. Furthermore, a curved microfluidic device with segmented electrodes was fabricated, which allows to experimentally investigate the effect of the enhanced diffusion-limited mass transport on the current density of a model redox couple and thus to prove the concept and the numerical results. It is shown that the Dean vortices, evolving in the curved channel, cause a convective transport of fresh solution towards the electrodes yielding a high current density and resulting in an improvement of 30% using a curved microfluidic fuel cell instead of a straight one. On condition that diffusive and convective mass transport are well-balanced, this approach promises not only a higher power density, but also a much higher fuel utilization.</p>\",\"PeriodicalId\":706,\"journal\":{\"name\":\"Microfluidics and Nanofluidics\",\"volume\":\"23 9\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2019-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10404-019-2274-2\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10404-019-2274-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-019-2274-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Passive control of the concentration boundary layer in microfluidic fuel cells using Dean vortices
Microfluidic fuel cells are limited by the formation of concentration boundary layers at the electrodes, resulting in low power density and low fuel utilization. This work demonstrates a novel method to enhance the diffusion-limited mass transport by decreasing the size of the concentration boundary layer using Dean vortices. These vortices are induced by a curved microchannel and enhance the mass transport of fresh reactant towards the electrodes. Numerical simulations were performed to show the influence of the Dean vortices on the performance of a microfluidic fuel cell. Furthermore, a curved microfluidic device with segmented electrodes was fabricated, which allows to experimentally investigate the effect of the enhanced diffusion-limited mass transport on the current density of a model redox couple and thus to prove the concept and the numerical results. It is shown that the Dean vortices, evolving in the curved channel, cause a convective transport of fresh solution towards the electrodes yielding a high current density and resulting in an improvement of 30% using a curved microfluidic fuel cell instead of a straight one. On condition that diffusive and convective mass transport are well-balanced, this approach promises not only a higher power density, but also a much higher fuel utilization.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).