基于编解码器效应的电话语音系统性能

IF 1.8 4区 计算机科学 Q3 TELECOMMUNICATIONS
Mohamed Hamidi, Ouissam Zealouk, Hassan Satori
{"title":"基于编解码器效应的电话语音系统性能","authors":"Mohamed Hamidi,&nbsp;Ouissam Zealouk,&nbsp;Hassan Satori","doi":"10.1007/s12243-023-00968-5","DOIUrl":null,"url":null,"abstract":"<div><h2>Abstract\n</h2><div><p>This paper is a part of our contribution to research on the enhancement of network automatic speech recognition system performance. We built a highly configurable platform by using hidden Markov models, Gaussian mixture models, and Mel frequency spectral coefficients, in addition to VoIP G.711-u and GSM codecs. To determine the optimal values for maximum performance, different acoustic models are prepared by varying the hidden Markov models (from 3 to 5) and Gaussian mixture models (8–16-32) with 13 feature extraction coefficients. Additionally, our generated acoustic models are tested by unencoded and encoded speech data based on G.711 and GSM codecs. The best parameterization performance is obtained for 3 HMM, 8–16 GMMs, and G.711 codecs.</p></div></div>","PeriodicalId":50761,"journal":{"name":"Annals of Telecommunications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Telephony speech system performance based on the codec effect\",\"authors\":\"Mohamed Hamidi,&nbsp;Ouissam Zealouk,&nbsp;Hassan Satori\",\"doi\":\"10.1007/s12243-023-00968-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Abstract\\n</h2><div><p>This paper is a part of our contribution to research on the enhancement of network automatic speech recognition system performance. We built a highly configurable platform by using hidden Markov models, Gaussian mixture models, and Mel frequency spectral coefficients, in addition to VoIP G.711-u and GSM codecs. To determine the optimal values for maximum performance, different acoustic models are prepared by varying the hidden Markov models (from 3 to 5) and Gaussian mixture models (8–16-32) with 13 feature extraction coefficients. Additionally, our generated acoustic models are tested by unencoded and encoded speech data based on G.711 and GSM codecs. The best parameterization performance is obtained for 3 HMM, 8–16 GMMs, and G.711 codecs.</p></div></div>\",\"PeriodicalId\":50761,\"journal\":{\"name\":\"Annals of Telecommunications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Telecommunications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12243-023-00968-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Telecommunications","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s12243-023-00968-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文是我们对提高网络自动语音识别系统性能的研究所做贡献的一部分。我们通过使用隐马尔可夫模型、高斯混合模型和梅尔频谱系数,以及VoIP G.711-u和GSM编解码器,构建了一个高度可配置的平台。为了确定最大性能的最佳值,通过改变具有13个特征提取系数的隐马尔可夫模型(从3到5)和高斯混合模型(8-16-32)来制备不同的声学模型。此外,我们生成的声学模型通过基于G.711和GSM编解码器的未编码和编码语音数据进行了测试。对于3个HMM、8-16个GMM和G.711编解码器,获得了最佳的参数化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Telephony speech system performance based on the codec effect

Telephony speech system performance based on the codec effect

Abstract

This paper is a part of our contribution to research on the enhancement of network automatic speech recognition system performance. We built a highly configurable platform by using hidden Markov models, Gaussian mixture models, and Mel frequency spectral coefficients, in addition to VoIP G.711-u and GSM codecs. To determine the optimal values for maximum performance, different acoustic models are prepared by varying the hidden Markov models (from 3 to 5) and Gaussian mixture models (8–16-32) with 13 feature extraction coefficients. Additionally, our generated acoustic models are tested by unencoded and encoded speech data based on G.711 and GSM codecs. The best parameterization performance is obtained for 3 HMM, 8–16 GMMs, and G.711 codecs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Telecommunications
Annals of Telecommunications 工程技术-电信学
CiteScore
5.20
自引率
5.30%
发文量
37
审稿时长
4.5 months
期刊介绍: Annals of Telecommunications is an international journal publishing original peer-reviewed papers in the field of telecommunications. It covers all the essential branches of modern telecommunications, ranging from digital communications to communication networks and the internet, to software, protocols and services, uses and economics. This large spectrum of topics accounts for the rapid convergence through telecommunications of the underlying technologies in computers, communications, content management towards the emergence of the information and knowledge society. As a consequence, the Journal provides a medium for exchanging research results and technological achievements accomplished by the European and international scientific community from academia and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信