摩洛哥特级初榨摩洛哥坚果油的紫外-可见光和正面荧光光谱鉴定,结合不同的描述性和预测性化学计量工具

IF 3 3区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Youssra El Haddad, Abdelkarim Filali-Maltouf, Bouchra Belkadi, Romdhane Karoui, Hicham Zaroual
{"title":"摩洛哥特级初榨摩洛哥坚果油的紫外-可见光和正面荧光光谱鉴定,结合不同的描述性和预测性化学计量工具","authors":"Youssra El Haddad,&nbsp;Abdelkarim Filali-Maltouf,&nbsp;Bouchra Belkadi,&nbsp;Romdhane Karoui,&nbsp;Hicham Zaroual","doi":"10.1007/s00217-023-04364-0","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the feasibility of using front face fluorescence (FFFS) and ultraviolet–visible (UV–visible) spectroscopies to authenticate 100 extra virgin argan oil (EVAO) samples from five Moroccan regions (Chtouka, Essaouira, Sidi Ifni, Taroudant, and Tiznit). Additionally, the study aims to identify and predict the percentage of adulteration in pure EVAO samples from these regions using less expensive vegetable oils (such as peanut, walnut, hazelnut, sunflower, grape, rapeseed, sesame, olive, and a mixture of these oils) at varying levels (1, 5, 10, 20, 30, 40 and 50%). By applying principal component analysis and factorial discriminant analysis on emission spectra acquired after excitation wavelengths set at 430 nm, 290 nm, and 270 nm, a perfect discrimination of EVAO samples based on their geographic origin was observed, achieving 100% correct classification; while UV–visible spectra data achieved 98.67% correct classification. Regarding the prediction of purity level of EVAO, partial least square regression applied to FFFS and UV–visible spectra data yielded an excellent prediction of adulteration level, with R<sup>2</sup> values of 0.99 for both spectral technics.</p></div>","PeriodicalId":549,"journal":{"name":"European Food Research and Technology","volume":"249 12","pages":"3247 - 3259"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00217-023-04364-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Moroccan extra virgin argan oil authentication by using ultraviolet–visible and front face fluorescence spectroscopies combined with different descriptive and predictive chemometric tools\",\"authors\":\"Youssra El Haddad,&nbsp;Abdelkarim Filali-Maltouf,&nbsp;Bouchra Belkadi,&nbsp;Romdhane Karoui,&nbsp;Hicham Zaroual\",\"doi\":\"10.1007/s00217-023-04364-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the feasibility of using front face fluorescence (FFFS) and ultraviolet–visible (UV–visible) spectroscopies to authenticate 100 extra virgin argan oil (EVAO) samples from five Moroccan regions (Chtouka, Essaouira, Sidi Ifni, Taroudant, and Tiznit). Additionally, the study aims to identify and predict the percentage of adulteration in pure EVAO samples from these regions using less expensive vegetable oils (such as peanut, walnut, hazelnut, sunflower, grape, rapeseed, sesame, olive, and a mixture of these oils) at varying levels (1, 5, 10, 20, 30, 40 and 50%). By applying principal component analysis and factorial discriminant analysis on emission spectra acquired after excitation wavelengths set at 430 nm, 290 nm, and 270 nm, a perfect discrimination of EVAO samples based on their geographic origin was observed, achieving 100% correct classification; while UV–visible spectra data achieved 98.67% correct classification. Regarding the prediction of purity level of EVAO, partial least square regression applied to FFFS and UV–visible spectra data yielded an excellent prediction of adulteration level, with R<sup>2</sup> values of 0.99 for both spectral technics.</p></div>\",\"PeriodicalId\":549,\"journal\":{\"name\":\"European Food Research and Technology\",\"volume\":\"249 12\",\"pages\":\"3247 - 3259\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00217-023-04364-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Food Research and Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00217-023-04364-0\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Food Research and Technology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s00217-023-04364-0","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了使用正面荧光(FFFS)和紫外-可见光谱法鉴定来自摩洛哥五个地区(Chtouka、Essaouira、Sidi Ifni、Taroudant和Tiznit)的100份特级初榨摩洛哥坚果油(EVAO)样品的可行性。此外,该研究旨在确定和预测来自这些地区的纯EVAO样品中使用不同水平(1、5、10、20、30、40和50%)的较便宜植物油(如花生、核桃、榛子、向日葵、葡萄、油菜籽、芝麻、橄榄和这些油的混合物)的掺假百分比。通过对激发波长设置为430nm、290nm和270nm后获得的发射光谱应用主成分分析和因子判别分析,观察到基于地理来源的EVAO样品的完美区分,实现了100%的正确分类;紫外-可见光谱数据的正确分类率为98.67%。关于EVAO纯度水平的预测,将偏最小二乘回归应用于FFFS和紫外-可见光谱数据,可以很好地预测掺杂水平,两种光谱技术的R2值均为0.99。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Moroccan extra virgin argan oil authentication by using ultraviolet–visible and front face fluorescence spectroscopies combined with different descriptive and predictive chemometric tools

Moroccan extra virgin argan oil authentication by using ultraviolet–visible and front face fluorescence spectroscopies combined with different descriptive and predictive chemometric tools

This study investigates the feasibility of using front face fluorescence (FFFS) and ultraviolet–visible (UV–visible) spectroscopies to authenticate 100 extra virgin argan oil (EVAO) samples from five Moroccan regions (Chtouka, Essaouira, Sidi Ifni, Taroudant, and Tiznit). Additionally, the study aims to identify and predict the percentage of adulteration in pure EVAO samples from these regions using less expensive vegetable oils (such as peanut, walnut, hazelnut, sunflower, grape, rapeseed, sesame, olive, and a mixture of these oils) at varying levels (1, 5, 10, 20, 30, 40 and 50%). By applying principal component analysis and factorial discriminant analysis on emission spectra acquired after excitation wavelengths set at 430 nm, 290 nm, and 270 nm, a perfect discrimination of EVAO samples based on their geographic origin was observed, achieving 100% correct classification; while UV–visible spectra data achieved 98.67% correct classification. Regarding the prediction of purity level of EVAO, partial least square regression applied to FFFS and UV–visible spectra data yielded an excellent prediction of adulteration level, with R2 values of 0.99 for both spectral technics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Food Research and Technology
European Food Research and Technology 工程技术-食品科技
CiteScore
6.60
自引率
3.00%
发文量
232
审稿时长
2.0 months
期刊介绍: The journal European Food Research and Technology publishes state-of-the-art research papers and review articles on fundamental and applied food research. The journal''s mission is the fast publication of high quality papers on front-line research, newest techniques and on developing trends in the following sections: -chemistry and biochemistry- technology and molecular biotechnology- nutritional chemistry and toxicology- analytical and sensory methodologies- food physics. Out of the scope of the journal are: - contributions which are not of international interest or do not have a substantial impact on food sciences, - submissions which comprise merely data collections, based on the use of routine analytical or bacteriological methods, - contributions reporting biological or functional effects without profound chemical and/or physical structure characterization of the compound(s) under research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信