\二维Navier-Stokes方程的(L^2)-临界非唯一性

IF 2.4 1区 数学 Q1 MATHEMATICS
Alexey Cheskidov, Xiaoyutao Luo
{"title":"\\二维Navier-Stokes方程的(L^2)-临界非唯一性","authors":"Alexey Cheskidov,&nbsp;Xiaoyutao Luo","doi":"10.1007/s40818-023-00154-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the 2D incompressible Navier-Stokes equations on the torus. It is well known that for any <span>\\(L^2\\)</span> divergence-free initial data, there exists a global smooth solution that is unique in the class of <span>\\(C_t L^2\\)</span> weak solutions. We show that such uniqueness would fail in the class <span>\\(C_t L^p\\)</span> if <span>\\( p&lt;2\\)</span>. The non-unique solutions we constructed are almost <span>\\(L^2\\)</span>-critical in the sense that (<i>i</i>) they are uniformly continuous in <span>\\(L^p\\)</span> for every <span>\\(p&lt;2\\)</span>; (<i>ii</i>) the kinetic energy agrees with any given smooth positive profile except on a set of arbitrarily small measure in time.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"9 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40818-023-00154-9.pdf","citationCount":"32","resultStr":"{\"title\":\"\\\\(L^2\\\\)-Critical Nonuniqueness for the 2D Navier-Stokes Equations\",\"authors\":\"Alexey Cheskidov,&nbsp;Xiaoyutao Luo\",\"doi\":\"10.1007/s40818-023-00154-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the 2D incompressible Navier-Stokes equations on the torus. It is well known that for any <span>\\\\(L^2\\\\)</span> divergence-free initial data, there exists a global smooth solution that is unique in the class of <span>\\\\(C_t L^2\\\\)</span> weak solutions. We show that such uniqueness would fail in the class <span>\\\\(C_t L^p\\\\)</span> if <span>\\\\( p&lt;2\\\\)</span>. The non-unique solutions we constructed are almost <span>\\\\(L^2\\\\)</span>-critical in the sense that (<i>i</i>) they are uniformly continuous in <span>\\\\(L^p\\\\)</span> for every <span>\\\\(p&lt;2\\\\)</span>; (<i>ii</i>) the kinetic energy agrees with any given smooth positive profile except on a set of arbitrarily small measure in time.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40818-023-00154-9.pdf\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-023-00154-9\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-023-00154-9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 32

摘要

本文研究了环面上的二维不可压缩Navier-Stokes方程。众所周知,对于任何(L^2)无散度的初始数据,都存在一个全局光滑解,它在(C_tL^2)弱解类中是唯一的。我们证明了在类\(C_tL^p\)中,如果\(p<;2\),这种唯一性将失效。我们构造的非唯一解几乎是(L^2\)关键的,因为(i)它们在\(L^p\)中对于每个\(p<;2\)是一致连续的;(ii)动能与任何给定的光滑正剖面一致,除了在一组任意小的时间尺度上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
\(L^2\)-Critical Nonuniqueness for the 2D Navier-Stokes Equations

In this paper, we consider the 2D incompressible Navier-Stokes equations on the torus. It is well known that for any \(L^2\) divergence-free initial data, there exists a global smooth solution that is unique in the class of \(C_t L^2\) weak solutions. We show that such uniqueness would fail in the class \(C_t L^p\) if \( p<2\). The non-unique solutions we constructed are almost \(L^2\)-critical in the sense that (i) they are uniformly continuous in \(L^p\) for every \(p<2\); (ii) the kinetic energy agrees with any given smooth positive profile except on a set of arbitrarily small measure in time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信