共形横各向异性流形上的一个半线性椭圆型方程的反问题

IF 2.4 1区 数学 Q1 MATHEMATICS
Ali Feizmohammadi, Tony Liimatainen, Yi-Hsuan Lin
{"title":"共形横各向异性流形上的一个半线性椭圆型方程的反问题","authors":"Ali Feizmohammadi,&nbsp;Tony Liimatainen,&nbsp;Yi-Hsuan Lin","doi":"10.1007/s40818-023-00153-w","DOIUrl":null,"url":null,"abstract":"<div><p>Given a conformally transversally anisotropic manifold (<i>M</i>, <i>g</i>), we consider the semilinear elliptic equation </p><div><div><span>$$\\begin{aligned} (-\\Delta _{g}+V)u+qu^2=0\\quad \\hbox { on}\\ M. \\end{aligned}$$</span></div></div><p>We show that an a priori unknown smooth function <i>q</i> can be uniquely determined from the knowledge of the Dirichlet-to-Neumann map associated to the equation. This extends the previously known results of the works Feizmohammadi and Oksanen (J Differ Equ 269(6):4683–4719, 2020), Lassas et al. (J Math Pures Appl 145:44–82, 2021). Our proof is based on over-differentiating the equation: We linearize the equation to orders higher than the order two of the nonlinearity <span>\\(qu^2\\)</span>, and introduce non-vanishing boundary traces for the linearizations. We study interactions of two or more products of the so-called Gaussian quasimode solutions to the linearized equation. We develop an asymptotic calculus to solve Laplace equations, which have these interactions as source terms.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"9 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40818-023-00153-w.pdf","citationCount":"10","resultStr":"{\"title\":\"An Inverse Problem for a Semilinear Elliptic Equation on Conformally Transversally Anisotropic Manifolds\",\"authors\":\"Ali Feizmohammadi,&nbsp;Tony Liimatainen,&nbsp;Yi-Hsuan Lin\",\"doi\":\"10.1007/s40818-023-00153-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a conformally transversally anisotropic manifold (<i>M</i>, <i>g</i>), we consider the semilinear elliptic equation </p><div><div><span>$$\\\\begin{aligned} (-\\\\Delta _{g}+V)u+qu^2=0\\\\quad \\\\hbox { on}\\\\ M. \\\\end{aligned}$$</span></div></div><p>We show that an a priori unknown smooth function <i>q</i> can be uniquely determined from the knowledge of the Dirichlet-to-Neumann map associated to the equation. This extends the previously known results of the works Feizmohammadi and Oksanen (J Differ Equ 269(6):4683–4719, 2020), Lassas et al. (J Math Pures Appl 145:44–82, 2021). Our proof is based on over-differentiating the equation: We linearize the equation to orders higher than the order two of the nonlinearity <span>\\\\(qu^2\\\\)</span>, and introduce non-vanishing boundary traces for the linearizations. We study interactions of two or more products of the so-called Gaussian quasimode solutions to the linearized equation. We develop an asymptotic calculus to solve Laplace equations, which have these interactions as source terms.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40818-023-00153-w.pdf\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-023-00153-w\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-023-00153-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

摘要

给定一个共形横向各向异性流形(M,g),我们考虑了半线性椭圆方程$$\beart{aligned}(-\Delta_{g}+V)u+qu^2=0\quad\hbox{on}\M\end{align}$$我们证明了先验未知光滑函数q可以根据与该方程相关的Dirichlet到Neumann映射的知识唯一确定。这扩展了Feizmohammadi和Oksanen(J Differ Equ 269(6):4683–47192020),Lassas等人(J Math Pures Appl 145:44–821021)的先前已知结果。我们的证明是基于对方程的过微分:我们将方程线性化到比非线性的二阶更高的阶,并为线性化引入非消失边界迹。我们研究线性化方程的所谓高斯拟模解的两个或多个乘积的相互作用。我们发展了一种渐近演算来求解拉普拉斯方程,这些方程将这些相互作用作为源项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Inverse Problem for a Semilinear Elliptic Equation on Conformally Transversally Anisotropic Manifolds

Given a conformally transversally anisotropic manifold (Mg), we consider the semilinear elliptic equation

$$\begin{aligned} (-\Delta _{g}+V)u+qu^2=0\quad \hbox { on}\ M. \end{aligned}$$

We show that an a priori unknown smooth function q can be uniquely determined from the knowledge of the Dirichlet-to-Neumann map associated to the equation. This extends the previously known results of the works Feizmohammadi and Oksanen (J Differ Equ 269(6):4683–4719, 2020), Lassas et al. (J Math Pures Appl 145:44–82, 2021). Our proof is based on over-differentiating the equation: We linearize the equation to orders higher than the order two of the nonlinearity \(qu^2\), and introduce non-vanishing boundary traces for the linearizations. We study interactions of two or more products of the so-called Gaussian quasimode solutions to the linearized equation. We develop an asymptotic calculus to solve Laplace equations, which have these interactions as source terms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信