Jónsson-Jónsson Tarski代数

IF 0.6 4区 数学 Q3 MATHEMATICS
Jordan DuBeau
{"title":"Jónsson-Jónsson Tarski代数","authors":"Jordan DuBeau","doi":"10.1007/s00012-023-00824-6","DOIUrl":null,"url":null,"abstract":"<div><p>By studying the variety of Jónsson–Tarski algebras, we demonstrate two obstacles to the existence of large Jónsson algebras in certain varieties. First, if an algebra <i>J</i> in a language <i>L</i> has cardinality greater than <span>\\(|L|^+\\)</span> and a distributive subalgebra lattice, then it must have a proper subalgebra of size |<i>J</i>|. Second, if an algebra <i>J</i> in a language <i>L</i> satisfies <span>\\({{\\,\\textrm{cf}\\,}}(|J|) &gt; 2^{|L|^+}\\)</span> and lies in a residually small variety, then it again must have a proper subalgebra of size |<i>J</i>|. We apply the first result to show that Jónsson algebras in the variety of Jónsson–Tarski algebras cannot have cardinality greater than <span>\\(\\aleph _1\\)</span>. We also construct <span>\\(2^{\\aleph _1}\\)</span> many pairwise nonisomorphic Jónsson algebras in this variety, thus proving that for some varieties the maximum possible number of Jónsson algebras can be achieved.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-023-00824-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Jónsson Jónsson–Tarski algebras\",\"authors\":\"Jordan DuBeau\",\"doi\":\"10.1007/s00012-023-00824-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>By studying the variety of Jónsson–Tarski algebras, we demonstrate two obstacles to the existence of large Jónsson algebras in certain varieties. First, if an algebra <i>J</i> in a language <i>L</i> has cardinality greater than <span>\\\\(|L|^+\\\\)</span> and a distributive subalgebra lattice, then it must have a proper subalgebra of size |<i>J</i>|. Second, if an algebra <i>J</i> in a language <i>L</i> satisfies <span>\\\\({{\\\\,\\\\textrm{cf}\\\\,}}(|J|) &gt; 2^{|L|^+}\\\\)</span> and lies in a residually small variety, then it again must have a proper subalgebra of size |<i>J</i>|. We apply the first result to show that Jónsson algebras in the variety of Jónsson–Tarski algebras cannot have cardinality greater than <span>\\\\(\\\\aleph _1\\\\)</span>. We also construct <span>\\\\(2^{\\\\aleph _1}\\\\)</span> many pairwise nonisomorphic Jónsson algebras in this variety, thus proving that for some varieties the maximum possible number of Jónsson algebras can be achieved.</p></div>\",\"PeriodicalId\":50827,\"journal\":{\"name\":\"Algebra Universalis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00012-023-00824-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Universalis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00012-023-00824-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-023-00824-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

通过研究Jónsson–Tarski代数的变种,我们证明了在某些变种中存在大Jónson代数的两个障碍。首先,如果语言L中的代数J具有大于\(|L|^+\)的基数和分配子代数格,则它必须具有大小为|J|的适当子代数。其次,如果语言L中的代数J满足\({{\,\textrm{cf}\,}})(|J|)>;2^{|L|^+}\)并且位于剩余的小变种中,则它必须再次具有大小为|J|的适当子代数。我们应用第一个结果证明了Jónsson–Tarski代数中的Jónson代数的基数不能大于\(\aleph_1\)。我们还在这个变种中构造了许多成对的非同构Jónsson代数,从而证明了对于某些变种,Jónson代数可以达到最大可能数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Jónsson Jónsson–Tarski algebras

Jónsson Jónsson–Tarski algebras

By studying the variety of Jónsson–Tarski algebras, we demonstrate two obstacles to the existence of large Jónsson algebras in certain varieties. First, if an algebra J in a language L has cardinality greater than \(|L|^+\) and a distributive subalgebra lattice, then it must have a proper subalgebra of size |J|. Second, if an algebra J in a language L satisfies \({{\,\textrm{cf}\,}}(|J|) > 2^{|L|^+}\) and lies in a residually small variety, then it again must have a proper subalgebra of size |J|. We apply the first result to show that Jónsson algebras in the variety of Jónsson–Tarski algebras cannot have cardinality greater than \(\aleph _1\). We also construct \(2^{\aleph _1}\) many pairwise nonisomorphic Jónsson algebras in this variety, thus proving that for some varieties the maximum possible number of Jónsson algebras can be achieved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信