基于多变量混合型纵向数据的分类及其在EU-SILC数据库中的应用

IF 1.4 4区 计算机科学 Q2 STATISTICS & PROBABILITY
Jan Vávra, Arnošt Komárek
{"title":"基于多变量混合型纵向数据的分类及其在EU-SILC数据库中的应用","authors":"Jan Vávra,&nbsp;Arnošt Komárek","doi":"10.1007/s11634-022-00504-8","DOIUrl":null,"url":null,"abstract":"<div><p>Although many present day studies gather data of a diverse nature (numeric quantities, binary indicators or ordered categories) on the same units repeatedly over time, there only exist limited number of approaches in the literature to analyse so-called <i>mixed-type</i> longitudinal data. We present a statistical model capable of joint modelling several mixed-type outcomes, which also accounts for possible dependencies among the investigated outcomes. A thresholding approach to link binary or ordinal variables to their latent numeric counterparts allows us to jointly model all, including latent, numeric outcomes using a multivariate version of the linear mixed-effects model. We avoid the independence assumption over outcomes by relaxing the variance matrix of random effects to a completely general positive definite matrix. Moreover, we follow model-based clustering methodology to create a mixture of such models to model heterogeneity in the temporal evolution of the considered outcomes. The estimation of such an hierarchical model is approached by Bayesian principles with the use of Markov chain Monte Carlo methods. After a successful simulation study with the aim to examine the ability to consistently estimate the true parameter values and thus discover the different patterns, the EU-SILC dataset consisting of Czech households that were followed for 4 years in a time span from 2005 to 2016 was analysed. The households were classified into groups with a similar evolution of several closely related indicators of monetary poverty based on estimated classification probabilities.\n</p></div>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"17 2","pages":"369 - 406"},"PeriodicalIF":1.4000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Classification based on multivariate mixed type longitudinal data with an application to the EU-SILC database\",\"authors\":\"Jan Vávra,&nbsp;Arnošt Komárek\",\"doi\":\"10.1007/s11634-022-00504-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Although many present day studies gather data of a diverse nature (numeric quantities, binary indicators or ordered categories) on the same units repeatedly over time, there only exist limited number of approaches in the literature to analyse so-called <i>mixed-type</i> longitudinal data. We present a statistical model capable of joint modelling several mixed-type outcomes, which also accounts for possible dependencies among the investigated outcomes. A thresholding approach to link binary or ordinal variables to their latent numeric counterparts allows us to jointly model all, including latent, numeric outcomes using a multivariate version of the linear mixed-effects model. We avoid the independence assumption over outcomes by relaxing the variance matrix of random effects to a completely general positive definite matrix. Moreover, we follow model-based clustering methodology to create a mixture of such models to model heterogeneity in the temporal evolution of the considered outcomes. The estimation of such an hierarchical model is approached by Bayesian principles with the use of Markov chain Monte Carlo methods. After a successful simulation study with the aim to examine the ability to consistently estimate the true parameter values and thus discover the different patterns, the EU-SILC dataset consisting of Czech households that were followed for 4 years in a time span from 2005 to 2016 was analysed. The households were classified into groups with a similar evolution of several closely related indicators of monetary poverty based on estimated classification probabilities.\\n</p></div>\",\"PeriodicalId\":49270,\"journal\":{\"name\":\"Advances in Data Analysis and Classification\",\"volume\":\"17 2\",\"pages\":\"369 - 406\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Analysis and Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11634-022-00504-8\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s11634-022-00504-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

尽管目前的许多研究随着时间的推移反复收集相同单位的不同性质的数据(数字量、二元指标或有序类别),但文献中分析所谓混合型纵向数据的方法数量有限。我们提出了一个能够联合建模几种混合类型结果的统计模型,该模型还考虑了所研究结果之间可能的相关性。将二元或序数变量与其潜在的数字对应物联系起来的阈值方法允许我们使用线性混合效应模型的多变量版本来联合建模所有结果,包括潜在的数字结果。我们通过将随机效应的方差矩阵放宽为完全一般的正定矩阵来避免对结果的独立性假设。此外,我们遵循基于模型的聚类方法来创建此类模型的混合,以对所考虑结果的时间演变中的异质性进行建模。利用贝叶斯原理和马尔可夫链蒙特卡罗方法对这种层次模型进行了估计。在一项旨在检验一致估计真实参数值从而发现不同模式的能力的成功模拟研究之后,分析了由捷克家庭组成的EU-SILC数据集,这些家庭在2005年至2016年的时间跨度内被跟踪了4年。根据估计的分类概率,将这些家庭分为几个密切相关的货币贫困指标演变相似的组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Classification based on multivariate mixed type longitudinal data with an application to the EU-SILC database

Classification based on multivariate mixed type longitudinal data with an application to the EU-SILC database

Although many present day studies gather data of a diverse nature (numeric quantities, binary indicators or ordered categories) on the same units repeatedly over time, there only exist limited number of approaches in the literature to analyse so-called mixed-type longitudinal data. We present a statistical model capable of joint modelling several mixed-type outcomes, which also accounts for possible dependencies among the investigated outcomes. A thresholding approach to link binary or ordinal variables to their latent numeric counterparts allows us to jointly model all, including latent, numeric outcomes using a multivariate version of the linear mixed-effects model. We avoid the independence assumption over outcomes by relaxing the variance matrix of random effects to a completely general positive definite matrix. Moreover, we follow model-based clustering methodology to create a mixture of such models to model heterogeneity in the temporal evolution of the considered outcomes. The estimation of such an hierarchical model is approached by Bayesian principles with the use of Markov chain Monte Carlo methods. After a successful simulation study with the aim to examine the ability to consistently estimate the true parameter values and thus discover the different patterns, the EU-SILC dataset consisting of Czech households that were followed for 4 years in a time span from 2005 to 2016 was analysed. The households were classified into groups with a similar evolution of several closely related indicators of monetary poverty based on estimated classification probabilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
6.20%
发文量
45
审稿时长
>12 weeks
期刊介绍: The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信