多变量切片锥上切片正则函数的一个表示公式

IF 1 3区 数学 Q1 MATHEMATICS
Xinyuan Dou, Guangbin Ren, Irene Sabadini
{"title":"多变量切片锥上切片正则函数的一个表示公式","authors":"Xinyuan Dou,&nbsp;Guangbin Ren,&nbsp;Irene Sabadini","doi":"10.1007/s10231-023-01325-y","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to extend the so called slice analysis to a general case in which the codomain is a real vector space of even dimension, i.e. is of the form <span>\\({\\mathbb {R}}^{2n}\\)</span>. This is a new setting which contains and encompasses in a nontrivial way other cases already studied in the literature and which requires new tools. To this end, we define a cone <span>\\({\\mathcal {W}}_{\\mathcal {C}}^d\\)</span> in <span>\\([{\\text {End}}({\\mathbb {R}}^{2n})]^d\\)</span> and we extend the slice topology <span>\\(\\tau _s\\)</span> to this cone. Slice regular functions can be defined on open sets in <span>\\(\\left( \\tau _s,{\\mathcal {W}}_{\\mathcal {C}}^d\\right) \\)</span> and a number of results can be proved in this framework, among which a representation formula. This theory can be applied to some real algebras, called left slice complex structure algebras. These algebras include quaternions, octonions, Clifford algebras and real alternative <span>\\(*\\)</span>-algebras but also left-alternative algebras and sedenions, thus providing brand new settings in slice analysis.\n</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-023-01325-y.pdf","citationCount":"3","resultStr":"{\"title\":\"A representation formula for slice regular functions over slice-cones in several variables\",\"authors\":\"Xinyuan Dou,&nbsp;Guangbin Ren,&nbsp;Irene Sabadini\",\"doi\":\"10.1007/s10231-023-01325-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this paper is to extend the so called slice analysis to a general case in which the codomain is a real vector space of even dimension, i.e. is of the form <span>\\\\({\\\\mathbb {R}}^{2n}\\\\)</span>. This is a new setting which contains and encompasses in a nontrivial way other cases already studied in the literature and which requires new tools. To this end, we define a cone <span>\\\\({\\\\mathcal {W}}_{\\\\mathcal {C}}^d\\\\)</span> in <span>\\\\([{\\\\text {End}}({\\\\mathbb {R}}^{2n})]^d\\\\)</span> and we extend the slice topology <span>\\\\(\\\\tau _s\\\\)</span> to this cone. Slice regular functions can be defined on open sets in <span>\\\\(\\\\left( \\\\tau _s,{\\\\mathcal {W}}_{\\\\mathcal {C}}^d\\\\right) \\\\)</span> and a number of results can be proved in this framework, among which a representation formula. This theory can be applied to some real algebras, called left slice complex structure algebras. These algebras include quaternions, octonions, Clifford algebras and real alternative <span>\\\\(*\\\\)</span>-algebras but also left-alternative algebras and sedenions, thus providing brand new settings in slice analysis.\\n</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10231-023-01325-y.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-023-01325-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01325-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

本文的目的是将所谓的切片分析扩展到一个一般情况,其中共域是偶数维的实向量空间,即形式为\({\mathbb{R}}^{2n}\)。这是一个新的环境,以一种不同寻常的方式包含了文献中已经研究过的其他案例,并且需要新的工具。为此,我们在\([{\text{end}}({\mathbb{R})^{2n})]^d\)中定义了一个锥\({\mathcal{W}}}_{\matcal{C})^d\,并将切片拓扑\(\tau _s\)扩展到这个锥。切片正则函数可以定义在\(\left(\tau_s,{\mathcal{W}}_{\math cal{C}}^d\right)\)中的开集上,并且在这个框架中可以证明许多结果,其中有一个表示公式。这个理论可以应用于一些实代数,称为左片复结构代数。这些代数包括四元数、八元数、Clifford代数和实替换代数,但也包括左替换代数和sedenion,从而为切片分析提供了全新的设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A representation formula for slice regular functions over slice-cones in several variables

The aim of this paper is to extend the so called slice analysis to a general case in which the codomain is a real vector space of even dimension, i.e. is of the form \({\mathbb {R}}^{2n}\). This is a new setting which contains and encompasses in a nontrivial way other cases already studied in the literature and which requires new tools. To this end, we define a cone \({\mathcal {W}}_{\mathcal {C}}^d\) in \([{\text {End}}({\mathbb {R}}^{2n})]^d\) and we extend the slice topology \(\tau _s\) to this cone. Slice regular functions can be defined on open sets in \(\left( \tau _s,{\mathcal {W}}_{\mathcal {C}}^d\right) \) and a number of results can be proved in this framework, among which a representation formula. This theory can be applied to some real algebras, called left slice complex structure algebras. These algebras include quaternions, octonions, Clifford algebras and real alternative \(*\)-algebras but also left-alternative algebras and sedenions, thus providing brand new settings in slice analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信