二维域上的奇异Liouville方程

IF 1 3区 数学 Q1 MATHEMATICS
Marcelo Montenegro, Matheus F. Stapenhorst
{"title":"二维域上的奇异Liouville方程","authors":"Marcelo Montenegro,&nbsp;Matheus F. Stapenhorst","doi":"10.1007/s10231-023-01326-x","DOIUrl":null,"url":null,"abstract":"<div><p>We prove the existence of a solution for an equation where the nonlinearity is singular at zero, namely <span>\\(-\\Delta u =(-u^{-\\beta }+f(u))\\chi _{\\{u&gt;0\\}}\\)</span> in <span>\\(\\Omega \\subset {\\mathbb {R}}^{2}\\)</span> with Dirichlet boundary condition. The function <i>f</i> grows exponentially, which can be subcritical or critical with respect to the Trudinger–Moser embedding. We examine the functional <span>\\(I_\\epsilon \\)</span> corresponding to the <span>\\(\\epsilon \\)</span>-perturbed equation <span>\\(-\\Delta u + g_\\epsilon (u) = f(u)\\)</span>, where <span>\\(g_\\epsilon \\)</span> tends pointwisely to <span>\\(u^{-\\beta }\\)</span> as <span>\\(\\epsilon \\rightarrow 0^+\\)</span>. We show that <span>\\(I_\\epsilon \\)</span> possesses a critical point <span>\\(u_\\epsilon \\)</span> in <span>\\(H_0^1(\\Omega )\\)</span>, which converges to a genuine nontrivial nonnegative solution of the original problem as <span>\\(\\epsilon \\rightarrow 0\\)</span>. We also address the problem with <i>f</i>(<i>u</i>) replaced by <span>\\(\\lambda f(u)\\)</span>, when the parameter <span>\\(\\lambda &gt;0\\)</span> is sufficiently large. We give examples.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-023-01326-x.pdf","citationCount":"0","resultStr":"{\"title\":\"A singular Liouville equation on two-dimensional domains\",\"authors\":\"Marcelo Montenegro,&nbsp;Matheus F. Stapenhorst\",\"doi\":\"10.1007/s10231-023-01326-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove the existence of a solution for an equation where the nonlinearity is singular at zero, namely <span>\\\\(-\\\\Delta u =(-u^{-\\\\beta }+f(u))\\\\chi _{\\\\{u&gt;0\\\\}}\\\\)</span> in <span>\\\\(\\\\Omega \\\\subset {\\\\mathbb {R}}^{2}\\\\)</span> with Dirichlet boundary condition. The function <i>f</i> grows exponentially, which can be subcritical or critical with respect to the Trudinger–Moser embedding. We examine the functional <span>\\\\(I_\\\\epsilon \\\\)</span> corresponding to the <span>\\\\(\\\\epsilon \\\\)</span>-perturbed equation <span>\\\\(-\\\\Delta u + g_\\\\epsilon (u) = f(u)\\\\)</span>, where <span>\\\\(g_\\\\epsilon \\\\)</span> tends pointwisely to <span>\\\\(u^{-\\\\beta }\\\\)</span> as <span>\\\\(\\\\epsilon \\\\rightarrow 0^+\\\\)</span>. We show that <span>\\\\(I_\\\\epsilon \\\\)</span> possesses a critical point <span>\\\\(u_\\\\epsilon \\\\)</span> in <span>\\\\(H_0^1(\\\\Omega )\\\\)</span>, which converges to a genuine nontrivial nonnegative solution of the original problem as <span>\\\\(\\\\epsilon \\\\rightarrow 0\\\\)</span>. We also address the problem with <i>f</i>(<i>u</i>) replaced by <span>\\\\(\\\\lambda f(u)\\\\)</span>, when the parameter <span>\\\\(\\\\lambda &gt;0\\\\)</span> is sufficiently large. We give examples.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10231-023-01326-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-023-01326-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01326-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了非线性在零处为奇异的方程的解的存在性,即具有Dirichlet边界条件的\(\Omega\subet{\mathbb{R}}^{2}\)中的\(-\Delta u=(-u^{-\beta}+f(u))\chi{u>0\})。函数f呈指数增长,相对于Trudinger–Moser嵌入,它可以是亚临界的或临界的。我们检验了对应于\(\epsilon\)扰动方程\(-\Delta u+g_\epsilon(u)=f(u)\)的函数\。我们证明了\(I_ε)在\(H_0^1(\Omega)\)中具有一个临界点\(u_\ε),它收敛于原问题的一个真正的非平凡非负解,如\(\ε\rightarrow 0\)。当参数\(\lambda>;0\)足够大时,我们还解决了用\(\landa f(u)\)替换f(u)的问题。我们举例说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A singular Liouville equation on two-dimensional domains

We prove the existence of a solution for an equation where the nonlinearity is singular at zero, namely \(-\Delta u =(-u^{-\beta }+f(u))\chi _{\{u>0\}}\) in \(\Omega \subset {\mathbb {R}}^{2}\) with Dirichlet boundary condition. The function f grows exponentially, which can be subcritical or critical with respect to the Trudinger–Moser embedding. We examine the functional \(I_\epsilon \) corresponding to the \(\epsilon \)-perturbed equation \(-\Delta u + g_\epsilon (u) = f(u)\), where \(g_\epsilon \) tends pointwisely to \(u^{-\beta }\) as \(\epsilon \rightarrow 0^+\). We show that \(I_\epsilon \) possesses a critical point \(u_\epsilon \) in \(H_0^1(\Omega )\), which converges to a genuine nontrivial nonnegative solution of the original problem as \(\epsilon \rightarrow 0\). We also address the problem with f(u) replaced by \(\lambda f(u)\), when the parameter \(\lambda >0\) is sufficiently large. We give examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信