有限长喷管内二维定常可压缩Euler流的跨声速接触间断稳定性

IF 2.4 1区 数学 Q1 MATHEMATICS
Feimin Huang, Jie Kuang, Dehua Wang, Wei Xiang
{"title":"有限长喷管内二维定常可压缩Euler流的跨声速接触间断稳定性","authors":"Feimin Huang,&nbsp;Jie Kuang,&nbsp;Dehua Wang,&nbsp;Wei Xiang","doi":"10.1007/s40818-021-00113-2","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the stability of transonic contact discontinuity for the two-dimensional steady compressible Euler flows in a finitely long nozzle. This is the first work on the mixed-type problem of transonic flows across a contact discontinuity as a free boundary in nozzles. We start with the Euler-Lagrangian transformation to straighten the contact discontinuity in the new coordinates. However, the upper nozzle wall in the subsonic region depending on the mass flux becomes a free boundary after the transformation. Then we develop new ideas and techniques to solve the free-boundary problem in three steps: (1) we fix the free boundary and generate a new iteration scheme to solve the corresponding fixed boundary value problem of the hyperbolic-elliptic mixed type by building some powerful estimates for both the first-order hyperbolic equation and a second-order nonlinear elliptic equation in a Lipschitz domain; (2) we update the new free boundary by constructing a mapping that has a fixed point; (3) we establish via the inverse Lagrangian coordinate transformation that the original free interface problem admits a unique piecewise smooth transonic solution near the background state, which consists of a smooth subsonic flow and a smooth supersonic flow with a contact discontinuity.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"7 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40818-021-00113-2.pdf","citationCount":"7","resultStr":"{\"title\":\"Stability of Transonic Contact Discontinuity for Two-Dimensional Steady Compressible Euler Flows in a Finitely Long Nozzle\",\"authors\":\"Feimin Huang,&nbsp;Jie Kuang,&nbsp;Dehua Wang,&nbsp;Wei Xiang\",\"doi\":\"10.1007/s40818-021-00113-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the stability of transonic contact discontinuity for the two-dimensional steady compressible Euler flows in a finitely long nozzle. This is the first work on the mixed-type problem of transonic flows across a contact discontinuity as a free boundary in nozzles. We start with the Euler-Lagrangian transformation to straighten the contact discontinuity in the new coordinates. However, the upper nozzle wall in the subsonic region depending on the mass flux becomes a free boundary after the transformation. Then we develop new ideas and techniques to solve the free-boundary problem in three steps: (1) we fix the free boundary and generate a new iteration scheme to solve the corresponding fixed boundary value problem of the hyperbolic-elliptic mixed type by building some powerful estimates for both the first-order hyperbolic equation and a second-order nonlinear elliptic equation in a Lipschitz domain; (2) we update the new free boundary by constructing a mapping that has a fixed point; (3) we establish via the inverse Lagrangian coordinate transformation that the original free interface problem admits a unique piecewise smooth transonic solution near the background state, which consists of a smooth subsonic flow and a smooth supersonic flow with a contact discontinuity.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"7 2\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40818-021-00113-2.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-021-00113-2\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-021-00113-2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

我们考虑了二维定常可压缩Euler流在有限长喷管中跨声速接触间断的稳定性。这是关于跨声速流动的混合型问题的第一项工作,跨接触不连续性是喷嘴中的自由边界。我们从欧拉-拉格朗日变换开始,在新坐标系中拉直接触不连续性。然而,在亚音速区域中,取决于质量通量的上喷嘴壁在变换后成为自由边界。然后,我们发展了新的思想和技术来解决自由边界问题,分三个步骤:(1)通过对Lipschitz中的一阶双曲方程和二阶非线性椭圆方程建立一些强大的估计,我们固定了自由边界,并生成了一个新的迭代方案来解决相应的双曲-椭圆混合型固定边值问题领域(2) 我们通过构造具有不动点的映射来更新新的自由边界;(3) 通过拉格朗日逆坐标变换,我们建立了原始自由界面问题在背景状态附近存在一个独特的分段光滑跨声速解,该解由光滑亚音速流和具有接触间断的光滑超音速流组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of Transonic Contact Discontinuity for Two-Dimensional Steady Compressible Euler Flows in a Finitely Long Nozzle

We consider the stability of transonic contact discontinuity for the two-dimensional steady compressible Euler flows in a finitely long nozzle. This is the first work on the mixed-type problem of transonic flows across a contact discontinuity as a free boundary in nozzles. We start with the Euler-Lagrangian transformation to straighten the contact discontinuity in the new coordinates. However, the upper nozzle wall in the subsonic region depending on the mass flux becomes a free boundary after the transformation. Then we develop new ideas and techniques to solve the free-boundary problem in three steps: (1) we fix the free boundary and generate a new iteration scheme to solve the corresponding fixed boundary value problem of the hyperbolic-elliptic mixed type by building some powerful estimates for both the first-order hyperbolic equation and a second-order nonlinear elliptic equation in a Lipschitz domain; (2) we update the new free boundary by constructing a mapping that has a fixed point; (3) we establish via the inverse Lagrangian coordinate transformation that the original free interface problem admits a unique piecewise smooth transonic solution near the background state, which consists of a smooth subsonic flow and a smooth supersonic flow with a contact discontinuity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信