多维拓扑Euler对准系统的全局解

IF 2.4 1区 数学 Q1 MATHEMATICS
Daniel Lear, David N. Reynolds, Roman Shvydkoy
{"title":"多维拓扑Euler对准系统的全局解","authors":"Daniel Lear,&nbsp;David N. Reynolds,&nbsp;Roman Shvydkoy","doi":"10.1007/s40818-021-00116-z","DOIUrl":null,"url":null,"abstract":"<div><p>We present a systematic approach to regularity theory of the multi-dimensional Euler alignment systems with topological diffusion introduced in [35]. While these systems exhibit flocking behavior emerging from purely local communication, bearing direct relevance to empirical field studies, global and even local well-posedness has proved to be a major challenge in multi-dimensional settings due to the presence of topological effects. In this paper we reveal two important classes of global smooth solutions—parallel shear flocks with incompressible velocity and stationary density profile, and nearly aligned flocks with close to constant velocity field but arbitrary density distribution. Existence of such classes is established via an efficient continuation criterion requiring control only on the Lipschitz norm of state quantities, which makes it accessible to the applications of fractional parabolic theory. The criterion presents a major improvement over the existing result of [28], and is proved with the use of quartic paraproduct estimates.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"8 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Global Solutions to Multi-dimensional Topological Euler Alignment Systems\",\"authors\":\"Daniel Lear,&nbsp;David N. Reynolds,&nbsp;Roman Shvydkoy\",\"doi\":\"10.1007/s40818-021-00116-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a systematic approach to regularity theory of the multi-dimensional Euler alignment systems with topological diffusion introduced in [35]. While these systems exhibit flocking behavior emerging from purely local communication, bearing direct relevance to empirical field studies, global and even local well-posedness has proved to be a major challenge in multi-dimensional settings due to the presence of topological effects. In this paper we reveal two important classes of global smooth solutions—parallel shear flocks with incompressible velocity and stationary density profile, and nearly aligned flocks with close to constant velocity field but arbitrary density distribution. Existence of such classes is established via an efficient continuation criterion requiring control only on the Lipschitz norm of state quantities, which makes it accessible to the applications of fractional parabolic theory. The criterion presents a major improvement over the existing result of [28], and is proved with the use of quartic paraproduct estimates.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-021-00116-z\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-021-00116-z","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一种系统的方法来研究[35]中引入的具有拓扑扩散的多维欧拉排列系统的正则性理论。虽然这些系统表现出纯粹局部通信中出现的群集行为,与经验领域研究直接相关,但由于拓扑效应的存在,全局甚至局部适定性已被证明是多维环境中的一个主要挑战。在本文中,我们揭示了两类重要的全局光滑解——具有不可压缩速度和固定密度分布的平行剪切群和具有接近恒定速度场但任意密度分布的近似排列群。这类的存在性是通过一个只需要控制状态量的Lipschitz范数的有效连续准则来建立的,这使得它可以用于分数抛物理论的应用。该标准对[28]的现有结果进行了重大改进,并用四次副积估计进行了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Solutions to Multi-dimensional Topological Euler Alignment Systems

We present a systematic approach to regularity theory of the multi-dimensional Euler alignment systems with topological diffusion introduced in [35]. While these systems exhibit flocking behavior emerging from purely local communication, bearing direct relevance to empirical field studies, global and even local well-posedness has proved to be a major challenge in multi-dimensional settings due to the presence of topological effects. In this paper we reveal two important classes of global smooth solutions—parallel shear flocks with incompressible velocity and stationary density profile, and nearly aligned flocks with close to constant velocity field but arbitrary density distribution. Existence of such classes is established via an efficient continuation criterion requiring control only on the Lipschitz norm of state quantities, which makes it accessible to the applications of fractional parabolic theory. The criterion presents a major improvement over the existing result of [28], and is proved with the use of quartic paraproduct estimates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信