紧致算子的Q,Q\(^*\)和Schatten–von Neumann理想中广义导子的非交换Pick–Julia定理

IF 1.2 3区 数学 Q1 MATHEMATICS
Danko R. Jocić
{"title":"紧致算子的Q,Q\\(^*\\)和Schatten–von Neumann理想中广义导子的非交换Pick–Julia定理","authors":"Danko R. Jocić","doi":"10.1007/s43034-023-00291-z","DOIUrl":null,"url":null,"abstract":"<div><p>If <i>C</i> and <i>D</i> are strictly accretive operators on <span>\\({\\mathcal {H}}\\)</span> and at least one of them is normal, such that <span>\\(CX\\!-\\!XD\\in { {{{\\varvec{{\\mathcal {C}}}}}}_{\\Psi }({\\mathcal {H}})}\\)</span> for some <span>\\(X\\in { {{{\\varvec{{\\mathcal {B}}}}}}({\\mathcal H})}\\)</span> and <span>\\(Q^*\\)</span> symmetrically norming function <span>\\(\\Psi ,\\)</span> then for all holomorphic functions <i>h</i>,  mapping the open right half (complex) plane into itself, we have <span>\\(h( C\\,\\!)X\\!-\\!Xh(D)\\in { {{{\\varvec{{\\mathcal {C}}}}}}_{\\Psi }({\\mathcal {H}})},\\)</span> satisfying </p><div><div><span>$$\\begin{aligned}&amp;\\bigl \\vert {\\,\\!\\bigl \\vert {(C^*\\!+C)^{ 1/2}\\bigl ({h( C\\,\\!){}X\\!-\\!Xh(D)\\!\\,\\!}\\bigr )(D+D^*\\!\\,\\!)^{ 1/2}}\\bigr \\vert \\,\\!}\\bigr \\vert _\\Psi \\\\&amp;\\leqslant \\bigl \\vert {\\,\\!\\bigl \\vert {\\bigl ({h( C\\,\\!){}^*\\!+h( C\\,\\!){}\\!\\,\\!}\\bigr )^{ 1/2}{({ CX\\!-\\!XD})} \\bigl ({h(D)+h(D)^*\\!\\,\\!}\\bigr )^{ 1/2}}\\bigr \\vert \\,\\!}\\bigr \\vert _\\Psi . \\end{aligned}$$</span></div></div><p>If <span>\\(1\\leqslant q,r,s\\leqslant {+\\infty }\\)</span> and <span>\\(p\\geqslant 2,A,B,X\\in { {{{\\varvec{{\\mathcal {B}}}}}}({\\mathcal H})}\\)</span> and <i>A</i>, <i>B</i> are strict contractions satisfying the condition <span>\\(AX\\!-\\!XB\\in { {{{\\varvec{{\\mathcal {C}}}}}}_{s}({\\mathcal {H}})},\\)</span> then for all holomorphic functions <i>g</i>,  mapping the open unit disc into the open right half (complex) plane, <span>\\(g(A)X\\!-\\!Xg(B)\\in { {{{\\varvec{{\\mathcal {C}}}}}}_{s}({\\mathcal {H}})},\\)</span> satisfying Schatten–von Neumann s-norms <span>\\((\\vert {\\;\\!\\vert {\\cdot }\\vert \\;\\!}\\vert _s)\\)</span> inequality </p><div><div><span>$$\\begin{aligned}&amp;\\,\\!\\Bigl \\vert \\!\\,\\!\\Bigl \\vert {\\bigl \\vert {\\!\\,\\!\\bigl ({g(A)^{*}\\!+g(A)\\!\\,\\!}\\bigr )^\\frac{1}{2}\\!{({I\\!-\\!A^{*}\\!A})}^\\frac{1}{2}\\!\\,\\!}\\bigr \\vert ^{\\!\\frac{1}{q}-1} \\!\\,\\!{({I\\!-\\!A^{*}\\!A})}^\\frac{1}{2}\\!\\bigl ({g(A)X\\!-\\!Xg(B)\\!\\,\\!}\\bigr )}\\Bigr .\\Bigr .\\\\&amp;\\times \\Bigl .\\Bigl .{{({I\\!-BB^*\\!\\,\\!})}^\\frac{1}{2}\\!\\bigl \\vert {\\!\\,\\!\\bigl ({g(B)+g(B)^{*}\\!\\,\\!}\\bigr )^\\frac{1}{2}\\!{({I\\!-BB^*\\!\\,\\!})}^\\frac{1}{2}\\!\\,\\!}\\bigr \\vert ^{\\!\\frac{1}{r}-1}\\!\\,\\!}\\Bigr \\vert \\!\\,\\!\\Bigr \\vert _s \\\\ \\leqslant&amp;\\,\\!\\Bigl \\vert \\!\\,\\!\\Bigl \\vert {\\bigl \\vert {\\!\\,\\!\\bigl ({g(A)^{*}\\!+g(A)\\!\\,\\!}\\bigr )^\\frac{1}{2}\\!{({I\\!-\\!AA^{*}\\!\\,\\!})}^\\frac{1}{2}\\!\\,\\!}\\bigr \\vert ^\\frac{1}{q} {({I-AA^*\\!\\,\\!})}^{\\!\\,\\!-\\frac{1}{2}}\\!\\,\\!{({AX\\!-\\!XB})}}\\Bigr .\\Bigr .\\\\&amp;\\times \\Bigl .\\Bigl .{{({I-B^*\\!B})}^{\\!\\,\\!-\\frac{1}{2}}\\!\\,\\!\\bigl \\vert {\\!\\,\\!\\bigl ({g(B)+g(B)^{*} \\!\\,\\!}\\bigr )^\\frac{1}{2} \\!{({I-B^*\\! B})}^\\frac{1}{2}\\!\\,\\!}\\bigr \\vert ^\\frac{1}{r}\\!\\,\\!}\\Bigr \\vert \\!\\,\\!\\Bigr \\vert _s. \\end{aligned}$$</span></div></div><p>Other variants of some new Pick–Julia-type norm and operator inequalities are also obtained, they both complement the well-known Pick–Julia theorems for operators, obtained by Ky Fan, Ando, and Author, and they also extend these theorems to the field of norm ideals of compact operators, including Schatten–von Neumann ideals.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43034-023-00291-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Noncommutative Pick–Julia theorems for generalized derivations in Q, Q\\\\(^*\\\\) and Schatten–von Neumann ideals of compact operators\",\"authors\":\"Danko R. Jocić\",\"doi\":\"10.1007/s43034-023-00291-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>If <i>C</i> and <i>D</i> are strictly accretive operators on <span>\\\\({\\\\mathcal {H}}\\\\)</span> and at least one of them is normal, such that <span>\\\\(CX\\\\!-\\\\!XD\\\\in { {{{\\\\varvec{{\\\\mathcal {C}}}}}}_{\\\\Psi }({\\\\mathcal {H}})}\\\\)</span> for some <span>\\\\(X\\\\in { {{{\\\\varvec{{\\\\mathcal {B}}}}}}({\\\\mathcal H})}\\\\)</span> and <span>\\\\(Q^*\\\\)</span> symmetrically norming function <span>\\\\(\\\\Psi ,\\\\)</span> then for all holomorphic functions <i>h</i>,  mapping the open right half (complex) plane into itself, we have <span>\\\\(h( C\\\\,\\\\!)X\\\\!-\\\\!Xh(D)\\\\in { {{{\\\\varvec{{\\\\mathcal {C}}}}}}_{\\\\Psi }({\\\\mathcal {H}})},\\\\)</span> satisfying </p><div><div><span>$$\\\\begin{aligned}&amp;\\\\bigl \\\\vert {\\\\,\\\\!\\\\bigl \\\\vert {(C^*\\\\!+C)^{ 1/2}\\\\bigl ({h( C\\\\,\\\\!){}X\\\\!-\\\\!Xh(D)\\\\!\\\\,\\\\!}\\\\bigr )(D+D^*\\\\!\\\\,\\\\!)^{ 1/2}}\\\\bigr \\\\vert \\\\,\\\\!}\\\\bigr \\\\vert _\\\\Psi \\\\\\\\&amp;\\\\leqslant \\\\bigl \\\\vert {\\\\,\\\\!\\\\bigl \\\\vert {\\\\bigl ({h( C\\\\,\\\\!){}^*\\\\!+h( C\\\\,\\\\!){}\\\\!\\\\,\\\\!}\\\\bigr )^{ 1/2}{({ CX\\\\!-\\\\!XD})} \\\\bigl ({h(D)+h(D)^*\\\\!\\\\,\\\\!}\\\\bigr )^{ 1/2}}\\\\bigr \\\\vert \\\\,\\\\!}\\\\bigr \\\\vert _\\\\Psi . \\\\end{aligned}$$</span></div></div><p>If <span>\\\\(1\\\\leqslant q,r,s\\\\leqslant {+\\\\infty }\\\\)</span> and <span>\\\\(p\\\\geqslant 2,A,B,X\\\\in { {{{\\\\varvec{{\\\\mathcal {B}}}}}}({\\\\mathcal H})}\\\\)</span> and <i>A</i>, <i>B</i> are strict contractions satisfying the condition <span>\\\\(AX\\\\!-\\\\!XB\\\\in { {{{\\\\varvec{{\\\\mathcal {C}}}}}}_{s}({\\\\mathcal {H}})},\\\\)</span> then for all holomorphic functions <i>g</i>,  mapping the open unit disc into the open right half (complex) plane, <span>\\\\(g(A)X\\\\!-\\\\!Xg(B)\\\\in { {{{\\\\varvec{{\\\\mathcal {C}}}}}}_{s}({\\\\mathcal {H}})},\\\\)</span> satisfying Schatten–von Neumann s-norms <span>\\\\((\\\\vert {\\\\;\\\\!\\\\vert {\\\\cdot }\\\\vert \\\\;\\\\!}\\\\vert _s)\\\\)</span> inequality </p><div><div><span>$$\\\\begin{aligned}&amp;\\\\,\\\\!\\\\Bigl \\\\vert \\\\!\\\\,\\\\!\\\\Bigl \\\\vert {\\\\bigl \\\\vert {\\\\!\\\\,\\\\!\\\\bigl ({g(A)^{*}\\\\!+g(A)\\\\!\\\\,\\\\!}\\\\bigr )^\\\\frac{1}{2}\\\\!{({I\\\\!-\\\\!A^{*}\\\\!A})}^\\\\frac{1}{2}\\\\!\\\\,\\\\!}\\\\bigr \\\\vert ^{\\\\!\\\\frac{1}{q}-1} \\\\!\\\\,\\\\!{({I\\\\!-\\\\!A^{*}\\\\!A})}^\\\\frac{1}{2}\\\\!\\\\bigl ({g(A)X\\\\!-\\\\!Xg(B)\\\\!\\\\,\\\\!}\\\\bigr )}\\\\Bigr .\\\\Bigr .\\\\\\\\&amp;\\\\times \\\\Bigl .\\\\Bigl .{{({I\\\\!-BB^*\\\\!\\\\,\\\\!})}^\\\\frac{1}{2}\\\\!\\\\bigl \\\\vert {\\\\!\\\\,\\\\!\\\\bigl ({g(B)+g(B)^{*}\\\\!\\\\,\\\\!}\\\\bigr )^\\\\frac{1}{2}\\\\!{({I\\\\!-BB^*\\\\!\\\\,\\\\!})}^\\\\frac{1}{2}\\\\!\\\\,\\\\!}\\\\bigr \\\\vert ^{\\\\!\\\\frac{1}{r}-1}\\\\!\\\\,\\\\!}\\\\Bigr \\\\vert \\\\!\\\\,\\\\!\\\\Bigr \\\\vert _s \\\\\\\\ \\\\leqslant&amp;\\\\,\\\\!\\\\Bigl \\\\vert \\\\!\\\\,\\\\!\\\\Bigl \\\\vert {\\\\bigl \\\\vert {\\\\!\\\\,\\\\!\\\\bigl ({g(A)^{*}\\\\!+g(A)\\\\!\\\\,\\\\!}\\\\bigr )^\\\\frac{1}{2}\\\\!{({I\\\\!-\\\\!AA^{*}\\\\!\\\\,\\\\!})}^\\\\frac{1}{2}\\\\!\\\\,\\\\!}\\\\bigr \\\\vert ^\\\\frac{1}{q} {({I-AA^*\\\\!\\\\,\\\\!})}^{\\\\!\\\\,\\\\!-\\\\frac{1}{2}}\\\\!\\\\,\\\\!{({AX\\\\!-\\\\!XB})}}\\\\Bigr .\\\\Bigr .\\\\\\\\&amp;\\\\times \\\\Bigl .\\\\Bigl .{{({I-B^*\\\\!B})}^{\\\\!\\\\,\\\\!-\\\\frac{1}{2}}\\\\!\\\\,\\\\!\\\\bigl \\\\vert {\\\\!\\\\,\\\\!\\\\bigl ({g(B)+g(B)^{*} \\\\!\\\\,\\\\!}\\\\bigr )^\\\\frac{1}{2} \\\\!{({I-B^*\\\\! B})}^\\\\frac{1}{2}\\\\!\\\\,\\\\!}\\\\bigr \\\\vert ^\\\\frac{1}{r}\\\\!\\\\,\\\\!}\\\\Bigr \\\\vert \\\\!\\\\,\\\\!\\\\Bigr \\\\vert _s. \\\\end{aligned}$$</span></div></div><p>Other variants of some new Pick–Julia-type norm and operator inequalities are also obtained, they both complement the well-known Pick–Julia theorems for operators, obtained by Ky Fan, Ando, and Author, and they also extend these theorems to the field of norm ideals of compact operators, including Schatten–von Neumann ideals.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43034-023-00291-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-023-00291-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-023-00291-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果C和D是\({\mathcal{H}})上的严格增生算子,并且它们中至少有一个是正规的,使得\(CX\!-\!XD\在{{\varvec}{\math cal{C}(})}_{\Psi}({\ mathcal{H})}\中)对于某些\ H,将开右半(复数)平面映射到其自身,我们有\(h(C\,\!)X\!-\!Xh(D)\在{{{\varvec}{\mathcal{C}_{\Psi}({\math cal{H})}中,\)满足$$\boot{aligned}&;\bigl\vert!Xh(D)\!\,\!}\bigr)(D+D^*\!\,\!)^{1/2}}\bigr\vert\,\,}\bigr\vert_\Psi\\&;\leqslant\bigl\vert+h(\\,\!){}\!\,\!}\bigr)^{1/2}{({CX\!-\!XD})}\bigl({h(D)+h(D!^*\!\,\!}\bigr)^{\bigr\vert_\Psi。\end{aligned}$$如果\(1\leqslant q,r,s\leqsplant{+\infty}\)和\(p\geqslant 2,A,B,X\ in{{\varvec}{\mathcal{B,X}({\math cal H})})和A,B是满足条件\(AX\!-\!XB\ in将开放单元圆盘映射到开放右半(复数)平面,\(g(A)X\!-\!Xg(B)\在满足Schatten–von Neumann s范数\((\vert{\;\!\vert{\cdot}\vert\;\;!}\vert_s)\)不等式$$\boot{aligned}&;\,\!\Bigl\vert\!\,\!\Bigl\vert+g(A)\!\,\!}\bigr)^\frac{1}{2}\!{({I\!-\!A^{*}\!A})}^\ frac{1}{2}\,\!}\bigr\vert^{\!\frac{1}{q}-1}\!\,\!{({I\!-\!A^{*}\!A})}^\ frac{1}{2}\!\bigl({g(A)X\!-\!Xg(B)\!\,\!}\bigr)}\bigr。\Bigr\\&;\times\Bigl。\Bigl。{({I\!-BB^*\!\,\!})}^\ frac{1}{2}\!\bigl\vert\bigr)^\frac{1}{2}\!{({I\!-BB^*\!\,\!})}^\frac{1}{2}\!\!\\bigr\vert^{\!\frac{1}{r}-1}\!\,\!}\大\垂直\!\,\!\Bigr\vert _s \\\leqslant&;\,\!\Bigl\vert\!\,\!\Bigl\vert+g(A)\!\,\!}\bigr)^\frac{1}{2}\!{({I\!-\!AA^{*}\!\,\!}\bigr\vert^\frac{1}{q}{!{({AX\!-\!XB})}}\Bigr。\Bigr\\&;\times\Bigl。\Bigl。{{({I-B^*\!B})}^{\!\,\!-\frac{1}{2}}!\!\bigl\vert\bigr)^\frac{1}{2}\!{({I-B^*\!B})}^\ frac{1}{2}\!\,\!}\bigr\vert^\frac{1}{r}\!\,\!}\大\垂直\!\,\!\大\垂直_s。\end{aligned}$$还得到了一些新的Pick–Julia型范数和算子不等式的其他变体,它们都补充了Ky Fan、Ando和Author获得的著名的算子的Pick-Julia定理,并将这些定理推广到紧致算子的范数理想领域,包括Schatten–von Neumann理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noncommutative Pick–Julia theorems for generalized derivations in Q, Q\(^*\) and Schatten–von Neumann ideals of compact operators

If C and D are strictly accretive operators on \({\mathcal {H}}\) and at least one of them is normal, such that \(CX\!-\!XD\in { {{{\varvec{{\mathcal {C}}}}}}_{\Psi }({\mathcal {H}})}\) for some \(X\in { {{{\varvec{{\mathcal {B}}}}}}({\mathcal H})}\) and \(Q^*\) symmetrically norming function \(\Psi ,\) then for all holomorphic functions h,  mapping the open right half (complex) plane into itself, we have \(h( C\,\!)X\!-\!Xh(D)\in { {{{\varvec{{\mathcal {C}}}}}}_{\Psi }({\mathcal {H}})},\) satisfying

$$\begin{aligned}&\bigl \vert {\,\!\bigl \vert {(C^*\!+C)^{ 1/2}\bigl ({h( C\,\!){}X\!-\!Xh(D)\!\,\!}\bigr )(D+D^*\!\,\!)^{ 1/2}}\bigr \vert \,\!}\bigr \vert _\Psi \\&\leqslant \bigl \vert {\,\!\bigl \vert {\bigl ({h( C\,\!){}^*\!+h( C\,\!){}\!\,\!}\bigr )^{ 1/2}{({ CX\!-\!XD})} \bigl ({h(D)+h(D)^*\!\,\!}\bigr )^{ 1/2}}\bigr \vert \,\!}\bigr \vert _\Psi . \end{aligned}$$

If \(1\leqslant q,r,s\leqslant {+\infty }\) and \(p\geqslant 2,A,B,X\in { {{{\varvec{{\mathcal {B}}}}}}({\mathcal H})}\) and AB are strict contractions satisfying the condition \(AX\!-\!XB\in { {{{\varvec{{\mathcal {C}}}}}}_{s}({\mathcal {H}})},\) then for all holomorphic functions g,  mapping the open unit disc into the open right half (complex) plane, \(g(A)X\!-\!Xg(B)\in { {{{\varvec{{\mathcal {C}}}}}}_{s}({\mathcal {H}})},\) satisfying Schatten–von Neumann s-norms \((\vert {\;\!\vert {\cdot }\vert \;\!}\vert _s)\) inequality

$$\begin{aligned}&\,\!\Bigl \vert \!\,\!\Bigl \vert {\bigl \vert {\!\,\!\bigl ({g(A)^{*}\!+g(A)\!\,\!}\bigr )^\frac{1}{2}\!{({I\!-\!A^{*}\!A})}^\frac{1}{2}\!\,\!}\bigr \vert ^{\!\frac{1}{q}-1} \!\,\!{({I\!-\!A^{*}\!A})}^\frac{1}{2}\!\bigl ({g(A)X\!-\!Xg(B)\!\,\!}\bigr )}\Bigr .\Bigr .\\&\times \Bigl .\Bigl .{{({I\!-BB^*\!\,\!})}^\frac{1}{2}\!\bigl \vert {\!\,\!\bigl ({g(B)+g(B)^{*}\!\,\!}\bigr )^\frac{1}{2}\!{({I\!-BB^*\!\,\!})}^\frac{1}{2}\!\,\!}\bigr \vert ^{\!\frac{1}{r}-1}\!\,\!}\Bigr \vert \!\,\!\Bigr \vert _s \\ \leqslant&\,\!\Bigl \vert \!\,\!\Bigl \vert {\bigl \vert {\!\,\!\bigl ({g(A)^{*}\!+g(A)\!\,\!}\bigr )^\frac{1}{2}\!{({I\!-\!AA^{*}\!\,\!})}^\frac{1}{2}\!\,\!}\bigr \vert ^\frac{1}{q} {({I-AA^*\!\,\!})}^{\!\,\!-\frac{1}{2}}\!\,\!{({AX\!-\!XB})}}\Bigr .\Bigr .\\&\times \Bigl .\Bigl .{{({I-B^*\!B})}^{\!\,\!-\frac{1}{2}}\!\,\!\bigl \vert {\!\,\!\bigl ({g(B)+g(B)^{*} \!\,\!}\bigr )^\frac{1}{2} \!{({I-B^*\! B})}^\frac{1}{2}\!\,\!}\bigr \vert ^\frac{1}{r}\!\,\!}\Bigr \vert \!\,\!\Bigr \vert _s. \end{aligned}$$

Other variants of some new Pick–Julia-type norm and operator inequalities are also obtained, they both complement the well-known Pick–Julia theorems for operators, obtained by Ky Fan, Ando, and Author, and they also extend these theorems to the field of norm ideals of compact operators, including Schatten–von Neumann ideals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信