低正则性的空超曲面上的规范叶

IF 2.6 1区 数学 Q1 MATHEMATICS
Stefan Czimek, Olivier Graf
{"title":"低正则性的空超曲面上的规范叶","authors":"Stefan Czimek,&nbsp;Olivier Graf","doi":"10.1007/s40818-022-00124-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\({{\\mathcal {H}}}\\)</span> denote the future outgoing null hypersurface emanating from a spacelike 2-sphere <i>S</i> in a vacuum spacetime <span>\\(({{\\mathcal {M}}},\\textbf{g})\\)</span>. In this paper we study the so-called <i>canonical foliation</i> on <span>\\({{\\mathcal {H}}}\\)</span> introduced in [13, 22] and show that the corresponding geometry is controlled locally only in terms of the initial geometry on <i>S</i> and the <span>\\(L^2\\)</span> curvature flux through <span>\\({{\\mathcal {H}}}\\)</span>. In particular, we show that the ingoing and outgoing null expansions <span>\\({\\textrm{tr}}\\chi \\)</span> and <span>\\({\\textrm{tr}}{{{\\underline{\\chi }}}}\\)</span> are both locally uniformly bounded. The proof of our estimates relies on a generalisation of the methods of [15,16,17] and [1, 2, 26, 32] where the geodesic foliation on null hypersurfaces <span>\\({{\\mathcal {H}}}\\)</span> is studied. The results of this paper, while of independent interest, are essential for the proof of the spacelike-characteristic bounded <span>\\(L^2\\)</span> curvature theorem [12].</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"8 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Canonical Foliation On Null Hypersurfaces in Low Regularity\",\"authors\":\"Stefan Czimek,&nbsp;Olivier Graf\",\"doi\":\"10.1007/s40818-022-00124-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\({{\\\\mathcal {H}}}\\\\)</span> denote the future outgoing null hypersurface emanating from a spacelike 2-sphere <i>S</i> in a vacuum spacetime <span>\\\\(({{\\\\mathcal {M}}},\\\\textbf{g})\\\\)</span>. In this paper we study the so-called <i>canonical foliation</i> on <span>\\\\({{\\\\mathcal {H}}}\\\\)</span> introduced in [13, 22] and show that the corresponding geometry is controlled locally only in terms of the initial geometry on <i>S</i> and the <span>\\\\(L^2\\\\)</span> curvature flux through <span>\\\\({{\\\\mathcal {H}}}\\\\)</span>. In particular, we show that the ingoing and outgoing null expansions <span>\\\\({\\\\textrm{tr}}\\\\chi \\\\)</span> and <span>\\\\({\\\\textrm{tr}}{{{\\\\underline{\\\\chi }}}}\\\\)</span> are both locally uniformly bounded. The proof of our estimates relies on a generalisation of the methods of [15,16,17] and [1, 2, 26, 32] where the geodesic foliation on null hypersurfaces <span>\\\\({{\\\\mathcal {H}}}\\\\)</span> is studied. The results of this paper, while of independent interest, are essential for the proof of the spacelike-characteristic bounded <span>\\\\(L^2\\\\)</span> curvature theorem [12].</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"8 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-022-00124-7\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-022-00124-7","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

设\({{\mathcal{H}})表示在真空时空中从类空2球S发出的未来出射零超曲面(({\math cal{M})},\textbf{g})\)。在本文中,我们研究了[13,22]中引入的关于\({{\mathcal{H}})的所谓正则叶理,并证明了相应的几何结构仅根据S上的初始几何结构和通过\({\mathical{H}}})的\(L^2)曲率通量来局部控制。特别地,我们证明了传入和传出的空展开\({\textrm{tr}}\chi\)和\({{\txtrm{tr}{{下划线{\chi})都是局部一致有界的。我们估计的证明依赖于[15,16,17]和[1,2,26,32]方法的推广,其中研究了零超曲面上的测地线叶理。本文的结果虽然具有独立的意义,但对于证明类空间特征有界(L^2)曲率定理[12]是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Canonical Foliation On Null Hypersurfaces in Low Regularity

Let \({{\mathcal {H}}}\) denote the future outgoing null hypersurface emanating from a spacelike 2-sphere S in a vacuum spacetime \(({{\mathcal {M}}},\textbf{g})\). In this paper we study the so-called canonical foliation on \({{\mathcal {H}}}\) introduced in [13, 22] and show that the corresponding geometry is controlled locally only in terms of the initial geometry on S and the \(L^2\) curvature flux through \({{\mathcal {H}}}\). In particular, we show that the ingoing and outgoing null expansions \({\textrm{tr}}\chi \) and \({\textrm{tr}}{{{\underline{\chi }}}}\) are both locally uniformly bounded. The proof of our estimates relies on a generalisation of the methods of [15,16,17] and [1, 2, 26, 32] where the geodesic foliation on null hypersurfaces \({{\mathcal {H}}}\) is studied. The results of this paper, while of independent interest, are essential for the proof of the spacelike-characteristic bounded \(L^2\) curvature theorem [12].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信