拟周期轨道展开的Gevrey估计的一个简单证明:耗散模型和低维Tori

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Adrián P. Bustamante, Rafael de la Llave
{"title":"拟周期轨道展开的Gevrey估计的一个简单证明:耗散模型和低维Tori","authors":"Adrián P. Bustamante,&nbsp;Rafael de la Llave","doi":"10.1134/S1560354723040123","DOIUrl":null,"url":null,"abstract":"<div><p>We consider standard-like/Froeschlé dissipative maps\nwith a dissipation and nonlinear perturbation. That is,\n</p>\n <div><div><span>\n$$T_{\\varepsilon}(p,q)=\\left((1-\\gamma\\varepsilon^{3})p+\\mu+\\varepsilon V^{\\prime}(q),q+(1-\\gamma\\varepsilon^{3})p+\\mu+\\varepsilon V^{\\prime}(q)\\bmod 2\\pi\\right)$$\n</span></div></div>\n <p>\nwhere <span>\\(p\\in{\\mathbb{R}}^{D}\\)</span>, <span>\\(q\\in{\\mathbb{T}}^{D}\\)</span> are the dynamical\nvariables. We fix a frequency <span>\\(\\omega\\in{\\mathbb{R}}^{D}\\)</span> and study the existence of\nquasi-periodic orbits. When there is dissipation, having\na quasi-periodic orbit of frequency <span>\\(\\omega\\)</span> requires\nselecting the parameter <span>\\(\\mu\\)</span>, called <i>the drift</i>.</p><p>We first study the Lindstedt series (formal power series in <span>\\(\\varepsilon\\)</span>) for quasi-periodic orbits with <span>\\(D\\)</span> independent frequencies and the drift when <span>\\(\\gamma\\neq 0\\)</span>.\nWe show that, when <span>\\(\\omega\\)</span> is\nirrational, the series exist to all orders, and when <span>\\(\\omega\\)</span> is Diophantine,\nwe show that the formal Lindstedt series are Gevrey.\nThe Gevrey nature of the Lindstedt series above was shown\nin [3] using a more general method, but the present proof is\nrather elementary.</p><p>We also study the case when <span>\\(D=2\\)</span>, but the quasi-periodic orbits\nhave only one independent frequency (lower-dimensional tori).\nBoth when <span>\\(\\gamma=0\\)</span> and when <span>\\(\\gamma\\neq 0\\)</span>, we show\nthat, under some mild nondegeneracy conditions on <span>\\(V\\)</span>, there\nare (at least two) formal Lindstedt series defined to all orders\nand that they are Gevrey.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"28 4","pages":"707 - 730"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Simple Proof of Gevrey Estimates for Expansions of Quasi-Periodic Orbits: Dissipative Models and Lower-Dimensional Tori\",\"authors\":\"Adrián P. Bustamante,&nbsp;Rafael de la Llave\",\"doi\":\"10.1134/S1560354723040123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider standard-like/Froeschlé dissipative maps\\nwith a dissipation and nonlinear perturbation. That is,\\n</p>\\n <div><div><span>\\n$$T_{\\\\varepsilon}(p,q)=\\\\left((1-\\\\gamma\\\\varepsilon^{3})p+\\\\mu+\\\\varepsilon V^{\\\\prime}(q),q+(1-\\\\gamma\\\\varepsilon^{3})p+\\\\mu+\\\\varepsilon V^{\\\\prime}(q)\\\\bmod 2\\\\pi\\\\right)$$\\n</span></div></div>\\n <p>\\nwhere <span>\\\\(p\\\\in{\\\\mathbb{R}}^{D}\\\\)</span>, <span>\\\\(q\\\\in{\\\\mathbb{T}}^{D}\\\\)</span> are the dynamical\\nvariables. We fix a frequency <span>\\\\(\\\\omega\\\\in{\\\\mathbb{R}}^{D}\\\\)</span> and study the existence of\\nquasi-periodic orbits. When there is dissipation, having\\na quasi-periodic orbit of frequency <span>\\\\(\\\\omega\\\\)</span> requires\\nselecting the parameter <span>\\\\(\\\\mu\\\\)</span>, called <i>the drift</i>.</p><p>We first study the Lindstedt series (formal power series in <span>\\\\(\\\\varepsilon\\\\)</span>) for quasi-periodic orbits with <span>\\\\(D\\\\)</span> independent frequencies and the drift when <span>\\\\(\\\\gamma\\\\neq 0\\\\)</span>.\\nWe show that, when <span>\\\\(\\\\omega\\\\)</span> is\\nirrational, the series exist to all orders, and when <span>\\\\(\\\\omega\\\\)</span> is Diophantine,\\nwe show that the formal Lindstedt series are Gevrey.\\nThe Gevrey nature of the Lindstedt series above was shown\\nin [3] using a more general method, but the present proof is\\nrather elementary.</p><p>We also study the case when <span>\\\\(D=2\\\\)</span>, but the quasi-periodic orbits\\nhave only one independent frequency (lower-dimensional tori).\\nBoth when <span>\\\\(\\\\gamma=0\\\\)</span> and when <span>\\\\(\\\\gamma\\\\neq 0\\\\)</span>, we show\\nthat, under some mild nondegeneracy conditions on <span>\\\\(V\\\\)</span>, there\\nare (at least two) formal Lindstedt series defined to all orders\\nand that they are Gevrey.</p></div>\",\"PeriodicalId\":752,\"journal\":{\"name\":\"Regular and Chaotic Dynamics\",\"volume\":\"28 4\",\"pages\":\"707 - 730\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Chaotic Dynamics\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1560354723040123\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354723040123","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑具有耗散和非线性扰动的类标准/Foreschlé耗散映射。也就是说,$$T_{\varepsilon}(p,q)=\left((1-\gamma\varepsilion^{3})p+\mu+\varepssilon V^{\prime}(q),q+(1-\gamma\varepsillon ^{3})p+\mu+/varepsilonV ^{\prime}。我们固定了一个频率(ω在{\mathbb{R}}^{D}中),并研究了准周期轨道的存在性。当存在耗散时,具有频率\(\omega\)的准周期轨道需要选择参数\(\mu\),称为漂移。我们首先研究了具有\(D\)独立频率的准周期轨道的Lindstedt级数(\(\varepsilon\)中的形式幂级数)和\(\gamma\neq0\)时的漂移。我们证明了当\(\omega\)是正则级数时,级数存在于所有阶,当\(ω)是丢番图时,我们证明了形式Lindstedt级数是Gevrey。上述Lindstedt级数的Gevrey性质在[3]中使用了一种更通用的方法来证明,但目前的证明是初等的。我们还研究了当(D=2\),但准周期轨道只有一个独立频率(低维tori)的情况。当\(\gamma=0\)和\(\gamma\neq0\)时,我们证明了在\(V\)上的一些温和的非一般性条件下,存在(至少两个)形式的Lindstedt级数,它们被定义为所有阶,并且它们是Gevrey。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simple Proof of Gevrey Estimates for Expansions of Quasi-Periodic Orbits: Dissipative Models and Lower-Dimensional Tori

We consider standard-like/Froeschlé dissipative maps with a dissipation and nonlinear perturbation. That is,

$$T_{\varepsilon}(p,q)=\left((1-\gamma\varepsilon^{3})p+\mu+\varepsilon V^{\prime}(q),q+(1-\gamma\varepsilon^{3})p+\mu+\varepsilon V^{\prime}(q)\bmod 2\pi\right)$$

where \(p\in{\mathbb{R}}^{D}\), \(q\in{\mathbb{T}}^{D}\) are the dynamical variables. We fix a frequency \(\omega\in{\mathbb{R}}^{D}\) and study the existence of quasi-periodic orbits. When there is dissipation, having a quasi-periodic orbit of frequency \(\omega\) requires selecting the parameter \(\mu\), called the drift.

We first study the Lindstedt series (formal power series in \(\varepsilon\)) for quasi-periodic orbits with \(D\) independent frequencies and the drift when \(\gamma\neq 0\). We show that, when \(\omega\) is irrational, the series exist to all orders, and when \(\omega\) is Diophantine, we show that the formal Lindstedt series are Gevrey. The Gevrey nature of the Lindstedt series above was shown in [3] using a more general method, but the present proof is rather elementary.

We also study the case when \(D=2\), but the quasi-periodic orbits have only one independent frequency (lower-dimensional tori). Both when \(\gamma=0\) and when \(\gamma\neq 0\), we show that, under some mild nondegeneracy conditions on \(V\), there are (at least two) formal Lindstedt series defined to all orders and that they are Gevrey.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信