关于\(\mathbb{S}^{2}\)的三体相对平衡

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Toshiaki Fujiwara, Ernesto Pérez-Chavela
{"title":"关于\\(\\mathbb{S}^{2}\\)的三体相对平衡","authors":"Toshiaki Fujiwara,&nbsp;Ernesto Pérez-Chavela","doi":"10.1134/S1560354723040111","DOIUrl":null,"url":null,"abstract":"<div><p>We study relative equilibria (<span>\\(RE\\)</span>) for the three-body problem\non <span>\\(\\mathbb{S}^{2}\\)</span>,\nunder the influence of a general potential which only depends on\n<span>\\(\\cos\\sigma_{ij}\\)</span> where <span>\\(\\sigma_{ij}\\)</span> are the mutual angles\namong the masses.\nExplicit conditions for\nmasses <span>\\(m_{k}\\)</span> and <span>\\(\\cos\\sigma_{ij}\\)</span>\nto form relative equilibrium are shown.\nUsing the above conditions,\nwe study the equal masses case\nunder the cotangent potential.\nWe show the existence of\nscalene, isosceles, and equilateral Euler <span>\\(RE\\)</span>, and isosceles\nand equilateral Lagrange <span>\\(RE\\)</span>.\nWe also show that\nthe equilateral Euler <span>\\(RE\\)</span> on a rotating meridian\nexists for general potential <span>\\(\\sum_{i&lt;j}m_{i}m_{j}U(\\cos\\sigma_{ij})\\)</span>\nwith any mass ratios.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"28 4","pages":"690 - 706"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-Body Relative Equilibria on \\\\(\\\\mathbb{S}^{2}\\\\)\",\"authors\":\"Toshiaki Fujiwara,&nbsp;Ernesto Pérez-Chavela\",\"doi\":\"10.1134/S1560354723040111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study relative equilibria (<span>\\\\(RE\\\\)</span>) for the three-body problem\\non <span>\\\\(\\\\mathbb{S}^{2}\\\\)</span>,\\nunder the influence of a general potential which only depends on\\n<span>\\\\(\\\\cos\\\\sigma_{ij}\\\\)</span> where <span>\\\\(\\\\sigma_{ij}\\\\)</span> are the mutual angles\\namong the masses.\\nExplicit conditions for\\nmasses <span>\\\\(m_{k}\\\\)</span> and <span>\\\\(\\\\cos\\\\sigma_{ij}\\\\)</span>\\nto form relative equilibrium are shown.\\nUsing the above conditions,\\nwe study the equal masses case\\nunder the cotangent potential.\\nWe show the existence of\\nscalene, isosceles, and equilateral Euler <span>\\\\(RE\\\\)</span>, and isosceles\\nand equilateral Lagrange <span>\\\\(RE\\\\)</span>.\\nWe also show that\\nthe equilateral Euler <span>\\\\(RE\\\\)</span> on a rotating meridian\\nexists for general potential <span>\\\\(\\\\sum_{i&lt;j}m_{i}m_{j}U(\\\\cos\\\\sigma_{ij})\\\\)</span>\\nwith any mass ratios.</p></div>\",\"PeriodicalId\":752,\"journal\":{\"name\":\"Regular and Chaotic Dynamics\",\"volume\":\"28 4\",\"pages\":\"690 - 706\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Chaotic Dynamics\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1560354723040111\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354723040111","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了三体问题(\mathbb{S}^{2})在一般势的影响下的相对平衡(\(RE\)),该一般势仅取决于\(\ cos \ sigma_。给出了形成相对平衡的显式条件形式化\(m_{k}\)和\(\cos\sigma_{ij})。利用上述条件,我们研究了余切势下的等质量情形。我们证明了等腰、等腰、等边Euler(RE\)和等腰、等距Lagrange(RE\_{i}m_{j}U(\cos\sigma_{ij})\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Three-Body Relative Equilibria on \(\mathbb{S}^{2}\)

Three-Body Relative Equilibria on \(\mathbb{S}^{2}\)

We study relative equilibria (\(RE\)) for the three-body problem on \(\mathbb{S}^{2}\), under the influence of a general potential which only depends on \(\cos\sigma_{ij}\) where \(\sigma_{ij}\) are the mutual angles among the masses. Explicit conditions for masses \(m_{k}\) and \(\cos\sigma_{ij}\) to form relative equilibrium are shown. Using the above conditions, we study the equal masses case under the cotangent potential. We show the existence of scalene, isosceles, and equilateral Euler \(RE\), and isosceles and equilateral Lagrange \(RE\). We also show that the equilateral Euler \(RE\) on a rotating meridian exists for general potential \(\sum_{i<j}m_{i}m_{j}U(\cos\sigma_{ij})\) with any mass ratios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信