{"title":"LFT金属多材料车门概念的轻量化设计方法","authors":"Danshi Li, Xiangfan Fang","doi":"10.1007/s41104-022-00121-9","DOIUrl":null,"url":null,"abstract":"<div><p>This work presents a new approach to design and validate an economical lightweight multi-material roof-integrated vehicle door concept made of long-fiber thermoplastics (LFT) and metals with the consideration of package constrain, critical static and crash loading cases. A novel “two-ring” door structure is introduced, which consists of a major load-bearing region and a minor load-bearing but highly function-integrated region. This concept design concentrates on using cost-efficient lightweight materials, such as aluminum, LFTs and uni-directional tapes (UD-Tapes), as well as corresponding mass-production methods. Using the topology and parameter optimization along with the load anisotropy analysis, the rib structure on the door concept is optimized and the effective usage of UD-Tapes is guaranteed. In comparison to the steel reference, the final LFT-metal multi-material door concept achieves 20% weight reduction with a comparable or improved mechanical performance.</p></div>","PeriodicalId":100150,"journal":{"name":"Automotive and Engine Technology","volume":"7 3-4","pages":"385 - 407"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41104-022-00121-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Lightweight design approach of an LFT-metal multi-material vehicle door concept\",\"authors\":\"Danshi Li, Xiangfan Fang\",\"doi\":\"10.1007/s41104-022-00121-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work presents a new approach to design and validate an economical lightweight multi-material roof-integrated vehicle door concept made of long-fiber thermoplastics (LFT) and metals with the consideration of package constrain, critical static and crash loading cases. A novel “two-ring” door structure is introduced, which consists of a major load-bearing region and a minor load-bearing but highly function-integrated region. This concept design concentrates on using cost-efficient lightweight materials, such as aluminum, LFTs and uni-directional tapes (UD-Tapes), as well as corresponding mass-production methods. Using the topology and parameter optimization along with the load anisotropy analysis, the rib structure on the door concept is optimized and the effective usage of UD-Tapes is guaranteed. In comparison to the steel reference, the final LFT-metal multi-material door concept achieves 20% weight reduction with a comparable or improved mechanical performance.</p></div>\",\"PeriodicalId\":100150,\"journal\":{\"name\":\"Automotive and Engine Technology\",\"volume\":\"7 3-4\",\"pages\":\"385 - 407\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s41104-022-00121-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automotive and Engine Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41104-022-00121-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive and Engine Technology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s41104-022-00121-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lightweight design approach of an LFT-metal multi-material vehicle door concept
This work presents a new approach to design and validate an economical lightweight multi-material roof-integrated vehicle door concept made of long-fiber thermoplastics (LFT) and metals with the consideration of package constrain, critical static and crash loading cases. A novel “two-ring” door structure is introduced, which consists of a major load-bearing region and a minor load-bearing but highly function-integrated region. This concept design concentrates on using cost-efficient lightweight materials, such as aluminum, LFTs and uni-directional tapes (UD-Tapes), as well as corresponding mass-production methods. Using the topology and parameter optimization along with the load anisotropy analysis, the rib structure on the door concept is optimized and the effective usage of UD-Tapes is guaranteed. In comparison to the steel reference, the final LFT-metal multi-material door concept achieves 20% weight reduction with a comparable or improved mechanical performance.