{"title":"非线性Schrödinger方程的小能量坐标和精细轮廓","authors":"Scipio Cuccagna, Masaya Maeda","doi":"10.1007/s40818-021-00105-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we give a new and simplified proof of the theorem on selection of standing waves for small energy solutions of the nonlinear Schrödinger equations (NLS) that we gave in [6]. We consider a NLS with a Schrödinger operator with several eigenvalues, with corresponding families of small standing waves, and we show that any small energy solution converges to the orbit of a time periodic solution plus a scattering term. The novel idea is to consider the “refined profile”, a quasi–periodic function in time which almost solves the NLS and encodes the discrete modes of a solution. The refined profile, obtained by elementary means, gives us directly an optimal coordinate system, avoiding the normal form arguments in [6], giving us also a better understanding of the Fermi Golden Rule.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"7 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40818-021-00105-2","citationCount":"12","resultStr":"{\"title\":\"Coordinates at Small Energy and Refined Profiles for the Nonlinear Schrödinger Equation\",\"authors\":\"Scipio Cuccagna, Masaya Maeda\",\"doi\":\"10.1007/s40818-021-00105-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we give a new and simplified proof of the theorem on selection of standing waves for small energy solutions of the nonlinear Schrödinger equations (NLS) that we gave in [6]. We consider a NLS with a Schrödinger operator with several eigenvalues, with corresponding families of small standing waves, and we show that any small energy solution converges to the orbit of a time periodic solution plus a scattering term. The novel idea is to consider the “refined profile”, a quasi–periodic function in time which almost solves the NLS and encodes the discrete modes of a solution. The refined profile, obtained by elementary means, gives us directly an optimal coordinate system, avoiding the normal form arguments in [6], giving us also a better understanding of the Fermi Golden Rule.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"7 2\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40818-021-00105-2\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-021-00105-2\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-021-00105-2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Coordinates at Small Energy and Refined Profiles for the Nonlinear Schrödinger Equation
In this paper we give a new and simplified proof of the theorem on selection of standing waves for small energy solutions of the nonlinear Schrödinger equations (NLS) that we gave in [6]. We consider a NLS with a Schrödinger operator with several eigenvalues, with corresponding families of small standing waves, and we show that any small energy solution converges to the orbit of a time periodic solution plus a scattering term. The novel idea is to consider the “refined profile”, a quasi–periodic function in time which almost solves the NLS and encodes the discrete modes of a solution. The refined profile, obtained by elementary means, gives us directly an optimal coordinate system, avoiding the normal form arguments in [6], giving us also a better understanding of the Fermi Golden Rule.