基于点分散估计的屏蔽Vlasov–Poisson系统平衡的渐近稳定性

IF 2.4 1区 数学 Q1 MATHEMATICS
Daniel Han-Kwan, Toan T. Nguyen, Frédéric Rousset
{"title":"基于点分散估计的屏蔽Vlasov–Poisson系统平衡的渐近稳定性","authors":"Daniel Han-Kwan,&nbsp;Toan T. Nguyen,&nbsp;Frédéric Rousset","doi":"10.1007/s40818-021-00110-5","DOIUrl":null,"url":null,"abstract":"<div><p>We revisit the proof of Landau damping near stable homogenous equilibria of Vlasov–Poisson systems with screened interactions in the whole space <span>\\(\\mathbb {R}^d\\)</span> (for <span>\\(d\\ge 3\\)</span>) that was first established by Bedrossian, Masmoudi and Mouhot in [5]. Our proof follows a Lagrangian approach and relies on precise pointwise in time dispersive estimates in the physical space for the linearized problem that should be of independent interest. This allows to cut down the smoothness of the initial data required in [5] (roughly, we only need Lipschitz regularity). Moreover, the time decay estimates we prove are essentially sharp, being the same as those for free transport, up to a logarithmic correction.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"7 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40818-021-00110-5","citationCount":"25","resultStr":"{\"title\":\"Asymptotic Stability of Equilibria for Screened Vlasov–Poisson Systems via Pointwise Dispersive Estimates\",\"authors\":\"Daniel Han-Kwan,&nbsp;Toan T. Nguyen,&nbsp;Frédéric Rousset\",\"doi\":\"10.1007/s40818-021-00110-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We revisit the proof of Landau damping near stable homogenous equilibria of Vlasov–Poisson systems with screened interactions in the whole space <span>\\\\(\\\\mathbb {R}^d\\\\)</span> (for <span>\\\\(d\\\\ge 3\\\\)</span>) that was first established by Bedrossian, Masmoudi and Mouhot in [5]. Our proof follows a Lagrangian approach and relies on precise pointwise in time dispersive estimates in the physical space for the linearized problem that should be of independent interest. This allows to cut down the smoothness of the initial data required in [5] (roughly, we only need Lipschitz regularity). Moreover, the time decay estimates we prove are essentially sharp, being the same as those for free transport, up to a logarithmic correction.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"7 2\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40818-021-00110-5\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-021-00110-5\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-021-00110-5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 25

摘要

我们重新审视了Bedrossian、Masmoudi和Mouhot在[5]中首次建立的在整个空间中具有屏蔽相互作用的Vlasov–Poisson系统的稳定齐次平衡附近的Landau阻尼的证明。我们的证明遵循拉格朗日方法,并依赖于物理空间中线性化问题的精确逐点时间分散估计,该问题应该是独立的。这允许降低[5]中所需的初始数据的平滑度(大致上,我们只需要Lipschitz正则性)。此外,我们证明的时间衰减估计基本上是尖锐的,与自由传输的估计相同,直到对数校正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic Stability of Equilibria for Screened Vlasov–Poisson Systems via Pointwise Dispersive Estimates

We revisit the proof of Landau damping near stable homogenous equilibria of Vlasov–Poisson systems with screened interactions in the whole space \(\mathbb {R}^d\) (for \(d\ge 3\)) that was first established by Bedrossian, Masmoudi and Mouhot in [5]. Our proof follows a Lagrangian approach and relies on precise pointwise in time dispersive estimates in the physical space for the linearized problem that should be of independent interest. This allows to cut down the smoothness of the initial data required in [5] (roughly, we only need Lipschitz regularity). Moreover, the time decay estimates we prove are essentially sharp, being the same as those for free transport, up to a logarithmic correction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信