Heisenberg群上一类波动方程的衰变估计

IF 1 3区 数学 Q1 MATHEMATICS
Manli Song, Jiale Yang
{"title":"Heisenberg群上一类波动方程的衰变估计","authors":"Manli Song,&nbsp;Jiale Yang","doi":"10.1007/s10231-023-01334-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study a class of dispersive wave equations on the Heisenberg group <span>\\(H^n\\)</span>. Based on the group Fourier transform on <span>\\(H^n\\)</span>, the properties of the Laguerre functions and the stationary phase lemma, we establish the decay estimates for a class of dispersive semigroup on <span>\\(H^n\\)</span> given by <span>\\(e^{\\textrm{it}\\phi ({\\mathscr {L}})}\\)</span>, where <span>\\(\\phi : {\\mathbb {R}}^+ \\rightarrow {\\mathbb {R}}\\)</span> is smooth, and <span>\\({\\mathscr {L}}\\)</span> is the sub-Laplacian on <span>\\(H^n\\)</span>. Finally, using the duality arguments, we apply the obtained results to derive the Strichartz inequalities for the solutions of some specific equations, such as the fractional Schrödinger equation, the fractional wave equation and the fourth-order Schrödinger equation.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Decay estimates for a class of wave equations on the Heisenberg group\",\"authors\":\"Manli Song,&nbsp;Jiale Yang\",\"doi\":\"10.1007/s10231-023-01334-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study a class of dispersive wave equations on the Heisenberg group <span>\\\\(H^n\\\\)</span>. Based on the group Fourier transform on <span>\\\\(H^n\\\\)</span>, the properties of the Laguerre functions and the stationary phase lemma, we establish the decay estimates for a class of dispersive semigroup on <span>\\\\(H^n\\\\)</span> given by <span>\\\\(e^{\\\\textrm{it}\\\\phi ({\\\\mathscr {L}})}\\\\)</span>, where <span>\\\\(\\\\phi : {\\\\mathbb {R}}^+ \\\\rightarrow {\\\\mathbb {R}}\\\\)</span> is smooth, and <span>\\\\({\\\\mathscr {L}}\\\\)</span> is the sub-Laplacian on <span>\\\\(H^n\\\\)</span>. Finally, using the duality arguments, we apply the obtained results to derive the Strichartz inequalities for the solutions of some specific equations, such as the fractional Schrödinger equation, the fractional wave equation and the fourth-order Schrödinger equation.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-023-01334-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01334-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了海森堡群(H^n)上的一类色散波方程。基于\(H^n\)上的群傅立叶变换、Laguerre函数的性质和定相引理,我们建立了\(e^{\textrm{it}\phi({\mathscr{L}})}\)上一类色散半群的衰变估计,其中\(\ phi:{\math bb{R}}^+\rightarrow{\mah bb{R}}\)是光滑的,\。最后,利用对偶论点,我们将所得结果应用于一些特定方程的解的Strichartz不等式,如分数阶薛定谔方程、分数阶波动方程和四阶薛定谔方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decay estimates for a class of wave equations on the Heisenberg group

In this paper, we study a class of dispersive wave equations on the Heisenberg group \(H^n\). Based on the group Fourier transform on \(H^n\), the properties of the Laguerre functions and the stationary phase lemma, we establish the decay estimates for a class of dispersive semigroup on \(H^n\) given by \(e^{\textrm{it}\phi ({\mathscr {L}})}\), where \(\phi : {\mathbb {R}}^+ \rightarrow {\mathbb {R}}\) is smooth, and \({\mathscr {L}}\) is the sub-Laplacian on \(H^n\). Finally, using the duality arguments, we apply the obtained results to derive the Strichartz inequalities for the solutions of some specific equations, such as the fractional Schrödinger equation, the fractional wave equation and the fourth-order Schrödinger equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信