Charles Collot, Tej-Eddine Ghoul, Nader Masmoudi, Van Tien Nguyen
{"title":"二维Keller-Segel系统奇异性形成的谱分析","authors":"Charles Collot, Tej-Eddine Ghoul, Nader Masmoudi, Van Tien Nguyen","doi":"10.1007/s40818-022-00118-5","DOIUrl":null,"url":null,"abstract":"<div><p>We analyse an operator arising in the description of singular solutions to the two-dimensional Keller-Segel problem. It corresponds to the linearised operator in parabolic self-similar variables, close to a concentrated stationary state. This is a two-scale problem, with a vanishing thin transition zone near the origin. Via rigorous matched asymptotic expansions, we describe the eigenvalues and eigenfunctions precisely. We also show a stability result with respect to suitable perturbations, as well as a coercivity estimate for the non-radial part. These results are used as key arguments in a new rigorous proof of the existence and refined description of singular solutions for the Keller–Segel problem by the authors [8]. The present paper extends the result by Dejak, Lushnikov, Yu, Ovchinnikov and Sigal [11]. Two major difficulties arise in the analysis: this is a singular limit problem, and a degeneracy causes corrections not being polynomial but logarithmic with respect to the main parameter.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"8 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Spectral Analysis for Singularity Formation of the Two Dimensional Keller–Segel System\",\"authors\":\"Charles Collot, Tej-Eddine Ghoul, Nader Masmoudi, Van Tien Nguyen\",\"doi\":\"10.1007/s40818-022-00118-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We analyse an operator arising in the description of singular solutions to the two-dimensional Keller-Segel problem. It corresponds to the linearised operator in parabolic self-similar variables, close to a concentrated stationary state. This is a two-scale problem, with a vanishing thin transition zone near the origin. Via rigorous matched asymptotic expansions, we describe the eigenvalues and eigenfunctions precisely. We also show a stability result with respect to suitable perturbations, as well as a coercivity estimate for the non-radial part. These results are used as key arguments in a new rigorous proof of the existence and refined description of singular solutions for the Keller–Segel problem by the authors [8]. The present paper extends the result by Dejak, Lushnikov, Yu, Ovchinnikov and Sigal [11]. Two major difficulties arise in the analysis: this is a singular limit problem, and a degeneracy causes corrections not being polynomial but logarithmic with respect to the main parameter.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-022-00118-5\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-022-00118-5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Spectral Analysis for Singularity Formation of the Two Dimensional Keller–Segel System
We analyse an operator arising in the description of singular solutions to the two-dimensional Keller-Segel problem. It corresponds to the linearised operator in parabolic self-similar variables, close to a concentrated stationary state. This is a two-scale problem, with a vanishing thin transition zone near the origin. Via rigorous matched asymptotic expansions, we describe the eigenvalues and eigenfunctions precisely. We also show a stability result with respect to suitable perturbations, as well as a coercivity estimate for the non-radial part. These results are used as key arguments in a new rigorous proof of the existence and refined description of singular solutions for the Keller–Segel problem by the authors [8]. The present paper extends the result by Dejak, Lushnikov, Yu, Ovchinnikov and Sigal [11]. Two major difficulties arise in the analysis: this is a singular limit problem, and a degeneracy causes corrections not being polynomial but logarithmic with respect to the main parameter.