黎曼流形的零性及其分裂张量

IF 1 3区 数学 Q1 MATHEMATICS
Claudio Gorodski, Felippe Guimarães
{"title":"黎曼流形的零性及其分裂张量","authors":"Claudio Gorodski,&nbsp;Felippe Guimarães","doi":"10.1007/s10231-023-01330-1","DOIUrl":null,"url":null,"abstract":"<div><p>We consider Riemannian <i>n</i>-manifolds <i>M</i> with nontrivial <span>\\(\\kappa \\)</span>-nullity “distribution” of the curvature tensor <i>R</i>, namely, the variable rank distribution of tangent subspaces to <i>M</i> where <i>R</i> coincides with the curvature tensor of a space of constant curvature <span>\\(\\kappa \\)</span> (<span>\\(\\kappa \\in \\mathbb {R}\\)</span>) is nontrivial. We obtain classification theorems under diferent additional assumptions, in terms of low nullity/conullity, controlled scalar curvature or existence of quotients of finite volume. We prove new results, but also revisit previous ones.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The \\\\(\\\\kappa \\\\)-nullity of Riemannian manifolds and their splitting tensors\",\"authors\":\"Claudio Gorodski,&nbsp;Felippe Guimarães\",\"doi\":\"10.1007/s10231-023-01330-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider Riemannian <i>n</i>-manifolds <i>M</i> with nontrivial <span>\\\\(\\\\kappa \\\\)</span>-nullity “distribution” of the curvature tensor <i>R</i>, namely, the variable rank distribution of tangent subspaces to <i>M</i> where <i>R</i> coincides with the curvature tensor of a space of constant curvature <span>\\\\(\\\\kappa \\\\)</span> (<span>\\\\(\\\\kappa \\\\in \\\\mathbb {R}\\\\)</span>) is nontrivial. We obtain classification theorems under diferent additional assumptions, in terms of low nullity/conullity, controlled scalar curvature or existence of quotients of finite volume. We prove new results, but also revisit previous ones.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-023-01330-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01330-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑曲率张量R具有非平凡\(\ kappa \)-零“分布”的黎曼n-流形M,即M的切子空间的变秩分布,其中R与常曲率空间\(\κ\)(\(\ kappa \ in\mathbb{R}\))的曲率张量重合。我们在不同的附加假设下,根据低零度/圆锥度、受控标量曲率或有限体积商的存在性,得到了分类定理。我们证明了新的结果,但也重新审视了以前的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The \(\kappa \)-nullity of Riemannian manifolds and their splitting tensors

We consider Riemannian n-manifolds M with nontrivial \(\kappa \)-nullity “distribution” of the curvature tensor R, namely, the variable rank distribution of tangent subspaces to M where R coincides with the curvature tensor of a space of constant curvature \(\kappa \) (\(\kappa \in \mathbb {R}\)) is nontrivial. We obtain classification theorems under diferent additional assumptions, in terms of low nullity/conullity, controlled scalar curvature or existence of quotients of finite volume. We prove new results, but also revisit previous ones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信